POJ 3233 Matrix Power Series 矩阵快速幂
if(n%2==0)s(n)=s(n/2)+s(n/2)*A^(n/2)
else s(n)=s((n-1)/2)+s((n-1)/2)*A^((n-1)/2) + A^n。
//#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<iostream> #include<sstream> #include<cmath> #include<climits> #include<string> #include<map> #include<queue> #include<vector> #include<stack> #include<set> using namespace std; typedef long long ll; typedef pair<int,int> pii; #define pb(a) push_back(a) #define INF 0x1f1f1f1f #define lson idx<<1,l,mid #define rson idx<<1|1,mid+1,r #define PI 3.1415926535898 template<class T> T min(const T& a,const T& b,const T& c) { return min(min(a,b),min(a,c)); } template<class T> T max(const T& a,const T& b,const T& c) { return max(max(a,b),max(a,c)); } void debug() { #ifdef ONLINE_JUDGE #else freopen("d:\\in.txt","r",stdin); // freopen("d:\\out1.txt","w",stdout); #endif } int getch() { int ch; while((ch=getchar())!=EOF) { if(ch!=' '&&ch!='\n')return ch; } return EOF; } int n,m; struct Matrix { int da[30][30]; Matrix operator * (const Matrix &ans) { Matrix res; for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { res.da[i][j]=0; for(int k=0;k<n;k++) res.da[i][j]=(res.da[i][j]+da[i][k]*ans.da[k][j])%m; } } return res; } Matrix operator +(const Matrix &ans) { Matrix res; for(int i=0;i<n;i++) for(int j=0;j<n;j++) res.da[i][j]=(da[i][j]+ans.da[i][j])%m; return res; } }; Matrix base; Matrix f(int n) { if(n==1)return base; if(n%2==0) { Matrix res=f(n/2); return res*res; }else { Matrix res=f(n/2); return res*res*base; } } Matrix s(int k) { if(k==1) return base; if(k%2==0) { Matrix res; res=s(k/2); return res+res*f(k/2); }else { Matrix res; res=s(k/2); return res+res*f(k/2)+f(k); } } int main() { int k; while(scanf("%d%d%d",&n,&k,&m)!=EOF) { for(int i=0;i<n;i++) for(int j=0;j<n;j++) { scanf("%d",&base.da[i][j]); base.da[i][j]%=m; } Matrix x=f(3); Matrix res=s(k); for(int i=0;i<n;i++) { for(int j=0;j<n;j++) printf("%d%c",res.da[i][j],j+1==n?'\n':' '); } } return 0; }