bzoj 2039 最小割模型

  比较明显的网络流最小割模型,对于这种模型我们需要先求获利的和,然后减去代价即可。

  我们对于第i个人来说, 如果选他,会耗费A[I]的代价,那么(source,i,a[i])代表选他之后的代价,如果不选他,我们会产生Σw[i][j] 1<=j<=n的代价,也就是这么多的利益我们无法得到,然后对于两个人的互相影响,连边(i,j,2*w[i][j]),代表如果不选i,选j的话,本来i中选j的利益得不到,又要损失j对i的影响为w[i][j]。所以共计损失2*w[i][j]。之后求最小割=最大流就行了。

/**************************************************************
    Problem: 2039
    User: BLADEVIL
    Language: Pascal
    Result: Accepted
    Time:860 ms
    Memory:47112 kb
****************************************************************/
 
//By BLADEVIL
var
    n                           :longint;
    pre, other, len             :array[0..4000010] of longint;
    last                        :array[0..1010] of longint;
    l                           :longint;
    source, sink                :longint;
    que, d                      :array[0..1010] of longint;
    ans                         :longint;
     
function min(a,b:longint):longint;
begin
    if a>b then min:=b else min:=a;
end;
     
procedure connect(x,y,z:longint);
begin
    inc(l);
    pre[l]:=last[x];
    last[x]:=l;
    other[l]:=y;
    len[l]:=z;
end;
     
procedure init;
var
    i, j                        :longint;
    x                           :longint;
    sum                         :longint;
begin
    read(n);
    source:=n+2; sink:=source+1; l:=1;
    for i:=1 to n do
    begin
        read(x);
        connect(source,i,x);
        connect(i,source,0);
    end;
    for i:=1 to n do
    begin
        sum:=0;
        for j:=1 to n do
        begin
            read(x);
            if x=0 then continue;
            sum:=sum+x;
            connect(i,j,x<<1);
            connect(j,i,0);
            ans:=ans+x;
        end;
        connect(i,sink,sum);
        connect(sink,i,0);
    end;
end;
 
function bfs:boolean;
var
    h, t, cur                   :longint;
    q, p                        :longint;
begin
    fillchar(d,sizeof(d),0);
    h:=0; t:=1;
    que[1]:=source;
    d[source]:=1;
    while h<t do
    begin
        inc(h);
        cur:=que[h];
        q:=last[cur];
        while q<>0 do
        begin
            p:=other[q];
            if (len[q]>0) and (d[p]=0) then
            begin
                inc(t);
                que[t]:=p;
                d[p]:=d[cur]+1;
                if p=sink then exit(true);
            end;
            q:=pre[q];
        end;
    end;
    exit(false);
end;
 
function dinic(x,flow:longint):longint;
var
    rest, tmp                   :longint;
    q, p                        :longint;
begin
    if x=sink then exit(flow);
    rest:=flow;
    q:=last[x];
    while q<>0 do
    begin
        p:=other[q];
        if (len[q]>0) and (d[p]=d[x]+1) and (rest>0) then
        begin
            tmp:=dinic(p,min(len[q],rest));
            dec(rest,tmp);
            dec(len[q],tmp);
            inc(len[q xor 1],tmp);
        end;
        q:=pre[q];
    end;
    exit(flow-rest);
end;
 
procedure main;
begin
    while bfs do ans:=ans-dinic(source,maxlongint div 10);
    writeln(ans);
end;
 
begin
    init;
    main;
end.

 

posted on 2014-01-11 09:03  BLADEVIL  阅读(374)  评论(0编辑  收藏  举报