bzoj 2327 构图暴力判断+独立集个数

首先我们可以处理出10^6以内的所有的勾股数,如果我们有2*i-1和2*j互质,

 那么A=(2*i-1)*(2*i-1)+(2*i-1)*(2*j),B=2*j*j+(2*i-1)*(2*j)为互质

勾股数对,且保证所有的互质勾股数对都有这个性质,保证了了我们暴力可以枚举

所有的勾股数对

那么我们得到所有的勾股数对后,可以建图,得到一张类似于树的图,然后可能会有

一些环,但是比较少,一棵树的独立集个数是可以DP求的,那么这样的图可以暴力

规定每条非树边的两个端点取不取来每次都DP,得出所有情况,这样就行了。

/**************************************************************
    Problem: 2327
    User: BLADEVIL
    Language: Pascal
    Result: Accepted
    Time:3372 ms
    Memory:67608 kb
****************************************************************/
 
//By BLADEVIL
const
    d39                         =1000000007;
     
var
    n                           :longint;
    pre, other                  :array[0..2000010] of longint;
    last                        :array[0..1000010] of longint;
    l                           :longint;
    c, cur                      :array[0..1000010] of longint;
    pi                          :array[0..1000010] of longint;
    ans                         :int64;
    tot, sum                    :longint;
    flag                        :array[0..1000010] of boolean;
    b                           :array[0..1000010,0..2] of longint;
    w                           :array[0..1000010,0..2] of int64;
     
     
function gcd(a,b:longint):longint;
begin
    if b>a then exit(gcd(b,a)) else
    if b=0 then exit(a) else exit(gcd(b,a mod b));
end;
 
procedure connect(x,y:longint);
begin
    inc(l);
    pre[l]:=last[x];
    last[x]:=l;
    other[l]:=y;
end;
     
procedure make;
var
    i, j                        :longint;
    x, y                        :longint;
begin
    for i:=1 to 1000 do
        for j:=1 to 1000 do
            if gcd(2*i-1,2*j)=1 then
            begin
                x:=(2*i-1)*(2*i-1)+(2*i-1)*(2*j);
                y:=2*j*j+(2*i-1)*(2*j);
                if (x<=1000000) and (y<=1000000) then
                begin
                    connect(x,y);
                    connect(y,x);
                end;
            end;
end;
 
procedure init;
var
    i                           :longint;
    x                           :longint;
     
begin
    read(n);
    for i:=1 to n do
    begin
        read(x);
        inc(c[x]);
    end;
    pi[0]:=1;
    for i:=1 to n do pi[i]:=pi[i-1]*2 mod d39;
    ans:=1;
end;
 
procedure dfs(x,fa:longint);
var
    q, r, p                     :longint;
    f                           :boolean;
begin
    flag[x]:=true;
    q:=last[x];
    r:=0;
    while q<>0 do
    begin
        p:=other[q];
        f:=true;
        if c[p]>0 then
        begin
            if not flag[p] then
                dfs(p,x) else
            if p<>fa then
            begin
                if x<p then
                begin
                    inc(tot);
                    b[tot,1]:=x;
                    b[tot,2]:=p;
                end;
                if r<>0 then
                    pre[r]:=pre[q] else
                    last[x]:=pre[q];
                f:=false;
            end;
        end;
        if f then r:=q;
        q:=pre[q];
    end;
end;
 
procedure dp(x,fa:longint);
var
    q, p                        :longint;
 
begin
    q:=last[x];
    w[x,0]:=1; w[x,1]:=pi[c[x]]-1;
    if cur[x]=1 then w[x,1]:=0;
    if cur[x]=2 then w[x,0]:=0;
    while q<>0 do
    begin
        p:=other[q];
        if (c[p]>0) and (p<>fa) then
        begin
            dp(p,x);
            w[x,0]:=w[x,0]*(w[p,1]+w[p,0]) mod d39;
            w[x,1]:=w[x,1]*w[p,0] mod d39;
        end;
        q:=pre[q];
    end;
end;
 
procedure dfs_q(p,num:longint);
var
    x, y, curx, cury            :longint;
begin
    if p>tot then
    begin
        dp(num,0);
        sum:=(sum+w[num,0]) mod d39;
        sum:=(sum+w[num,1]) mod d39;
        exit;
    end;
    x:=b[p,1]; y:=b[p,2];
    curx:=cur[x]; cury:=cur[y];
    if (curx<>1) and (cury<>2) then
    begin
        cur[x]:=2;
        cur[y]:=1;
        dfs_q(p+1,num);
        cur[x]:=curx;
        cur[y]:=cury;
    end;
    if (curx<>2) then
    begin
        cur[x]:=1;
        dfs_q(p+1,num);
        cur[x]:=curx;
        cur[y]:=cury;
    end;
      
end;
 
procedure main;
var
    i                           :longint;
begin
    for i:=1 to 1000000 do
        if (c[i]>0) and (not flag[i]) then
        begin
            tot:=0;
            sum:=0;
            dfs(i,0);
            dfs_q(1,i);
            ans:=ans*sum mod d39;
        end;
    if ans=0 then ans:=d39;
    writeln(ans-1);
end;
 
begin
    make;
    init;
    main;
end.

 

posted on 2014-01-01 08:26  BLADEVIL  阅读(428)  评论(0编辑  收藏  举报