使用广播星历计算卫星坐标(Python)

前言

  1. 本代码为GNSS课程设计代码,仅供参考,使用的计算方法与公式均来源于王坚主编的《卫星定位原理与应用(第二版)》。
  2. 本代码计算结果可以通过下载精密星历进行比照,误差在1-10m左右。
  3. 实现功能:读取卫星广播星历,并将其计算为WGS-84坐标系下的坐标,每颗卫星,每15分钟输出一次。

广播星历下载

  1. 有多重方法进行下载,由于网络原因以及使用的便捷程度,建议使用武汉大学的IGS网站进行下载。(http://www.igs.gnsswhu.cn/index.php
  2. 文件名不需要填写,在选择时间时注意,即使只选择一天的数据,设置结束时间也要到第二天,否则会显示错误,检索结果中的数字代表该日期是所选年份的第几天。

Python函数库

本代码使用numpy,pandas,gnss_lib_py,matplotlib四个函数库,请提前安装。

安装代码

#两条命令根据使用环境进行选择
pip install gnss-lib-py pandas matplotlib #Python环境安装代码
conda install gnss-lib-py pandas matplotlib -c conda-forge #conda环境安装代码

gnss_lib_py库

GitHub主页:https://github.com/Stanford-NavLab/gnss_lib_py?tab=readme-ov-file
文档主页:https://gnss-lib-py.readthedocs.io/en/latest/index.html
本文主要使用该库的读取以及转化为DataFrame功能,其中参数的命名规则以及时间转换规则可以在文档中找到。

具体代码

建议使用jupyter进行执行,下方代码为分单元块格式,如果没有jupyter环境可以直接粘贴到一个python文件进行运行。

代码块一:

import gnss_lib_py as glp
import datetime
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

代码块二:

# 导入23n文件
file_path = 'brdc2550.23n'
data = glp.RinexNav(file_path)
data_df = data.pandas_df()

代码块三:

# 寻找最小差值的参考时刻
def find(inweekmilli, refers, insv):
    filter_sv = refers[refers['gnss_sv_id'] == insv]
    defference = np.abs(inweekmilli - filter_sv['t_oe'])
    return defference.idxmin()


times = np.array([None] * 24 * 4)
gpsmillis = np.array([None] * 24 * 4)

n = 0
for hour in range(0, 24):
    minut = 0
    while minut < 60:
        times[n] = datetime.datetime(2023, 9, 12, hour, minut, 0, tzinfo=datetime.timezone.utc)
        gpsmillis[n] = glp.datetime_to_gps_millis(times[n])
        minut += 15
        n += 1
gpsmillis = np.array(gpsmillis)

GM=3.986005E+14
sqrtGM = np.sqrt(GM)
sv_list = [f'G{str(i).zfill(2)}' for i in range(1, 33)]
outdata = pd.DataFrame(columns=['data', 'gnss_sv_id', 'X', 'Y', 'Z'], index=range(24 * 4 * 32))
orbit = pd.DataFrame(columns=['data', 'gnss_sv_id', 'x', 'y'], index=range(24 * 4 * 32))
m = 0
j = 0
print("正在计算,请稍候。")
for gpsmilli in gpsmillis:
    for sv in sv_list:
        week, milli_week = glp.gps_millis_to_tow(gpsmilli)
        milli_week=milli_week-18
        index = find(milli_week, data_df, sv)
        print(f'sv:{sv},time:{times[j]},index:{index}')
        print(milli_week,data_df.iloc[index]['t_oe'])
        a = np.power(data_df.iloc[index]['sqrtA'], 2)
        n0 = sqrtGM / np.power(a, 3 / 2)
        n = n0 + data_df.iloc[index]['deltaN']
        tk = milli_week - data_df.iloc[index]['t_oe']
        M = data_df.iloc[index]['M_0'] + n * tk
        e = data_df.iloc[index]['e']
        # 打印中间结果M和e
        print(f"M: {M}, e: {e}")

        # 解开普勒方程
        E = M
        for _ in range(50):  # 使用迭代方法求解E
            E = M + e * np.sin(E)
        
        # 打印中间结果E
        print(f"E: {E}")
        f = np.arctan((np.sqrt(1 - e**2) * np.sin(E)) / (np.cos(E) - e))
        if E > np.pi*0.5:
            f=f+np.pi
        if E < -np.pi*0.5:
            f=f-np.pi
        if np.pi*0.5 > E > 0 > f:
            f=f+np.pi
        if -np.pi*0.5 < E < 0 < f:
            f=f-np.pi
        print(f"arctan({(np.sqrt(1 - e**2) * np.sin(E)) / (np.cos(E) - e)}),f:{f}")
        u_pie = data_df.iloc[index]['omega'] + f
        r_pie = a * (1 - e * np.cos(E))
        C_uc = data_df.iloc[index]['C_uc']
        C_us = data_df.iloc[index]['C_us']
        C_rc = data_df.iloc[index]['C_rc']
        C_rs = data_df.iloc[index]['C_rs']
        C_ic = data_df.iloc[index]['C_ic']
        C_is = data_df.iloc[index]['C_is']
        delta_u = C_uc * np.cos(2 * u_pie) + C_us * np.sin(2 * u_pie)
        delta_r = C_rc * np.cos(2 * u_pie) + C_rs * np.sin(2 * u_pie)
        delta_i = C_ic * np.cos(2 * u_pie) + C_is * np.sin(2 * u_pie)
        u = u_pie + delta_u
        r = r_pie + delta_r
        i = data_df.iloc[index]['i_0'] + delta_i + data_df.iloc[index]['IDOT'] * tk
        print(f'u:{u}')
        x = r * np.cos(u)
        y = r * np.sin(u)
        w_e = 7.292115E-5
        L = data_df.iloc[index]['Omega_0'] + (data_df.iloc[index]['OmegaDot']- w_e )* milli_week - data_df.iloc[index]['OmegaDot']*data_df.iloc[index]['t_oe']
        X = x * np.cos(L) - y * np.cos(i) * np.sin(L)
        Y = x * np.sin(L) + y * np.cos(i) * np.cos(L)
        Z = y * np.sin(i)
        orbit.iloc[m,:] = [times[j],sv,x,y]
        outdata.iloc[m, :] = [times[j], sv, X, Y, Z]
        m += 1
    j += 1
print("由于结果较长,请到Excel中查看,文件位于代码同级目录下outdata.csv。")
outdata.to_csv('outdata.csv')
print("导出成功。")

代码块四:

# 三维坐标可视化显示
out_sv = 'G20'
fig = plt.figure()
ax = plt.axes(projection='3d')
X = outdata[outdata['gnss_sv_id'] == out_sv]['X']
Y = outdata[outdata['gnss_sv_id'] == out_sv]['Y']
Z = outdata[outdata['gnss_sv_id'] == out_sv]['Z']
ax.plot(X, Y, Z, label=out_sv)
ax.legend()
plt.show()
posted @   BIGWangqz  阅读(445)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· DeepSeek V3 两周使用总结
· 回顾我的软件开发经历(1)
· C#使用yield关键字提升迭代性能与效率
· 低成本高可用方案!Linux系统下SQL Server数据库镜像配置全流程详解
· 4. 使用sql查询excel内容
点击右上角即可分享
微信分享提示