BZOJ1103【POI2007】大都市meg <树上差分+树状数组>

【POI2007】大都市meg
Description
在经济全球化浪潮的影响下,习惯于漫步在清晨的乡间小路的邮递员Blue Mary也开始骑着摩托车传递邮件了。不过,她经常回忆起以前在乡间漫步的情景。昔日,乡下有依次编号为1..n的n个小村庄,某些村庄之间有一些双向的土路。从每个村庄都恰好有一条路径到达村庄1(即比特堡)。并且,对于每个村庄,它到比特堡的路径恰好只经过编号比它的编号小的村庄。另外,对于所有道路而言,它们都不在除村庄以外的其他地点相遇。在这个未开化的地方,从来没有过高架桥和地下铁道。随着时间的推移,越来越多的土路被改造成了公路。至今,Blue Mary还清晰地记得最后一条土路被改造为公路的情景。现在,这里已经没有土路了——所有的路都成为了公路,而昔日的村庄已经变成了一个大都市。 Blue Mary想起了在改造期间她送信的经历。她从比特堡出发,需要去某个村庄,并且在两次送信经历的间隔期间,有某些土路被改造成了公路.现在Blue Mary需要你的帮助:计算出每次送信她需要走过的土路数目。(对于公路,她可以骑摩托车;而对于土路,她就只好推车了。)

Input
第一行是一个数n(1 < = n < = 250000)
以下n-1行,每行两个整数a,b(1 <= a < b <= n),表示原有一条路连接a和b
以下一行包含一个整数m(1 < = m < = 250000),表示Blue Mary曾经在改造期间送过m次信。
以下n+m-1行,每行有两种格式的若干信息,表示按时间先后发生过的n+m-1次事件:
若这行为 A a b(1 <= a < b <= n),表示将a到b的土路修为公路。
若这行为 W a, 则表示Blue Mary曾经从比特堡送信到村庄a。
Output
有m行,每行包含一个整数,表示对应的某次送信时经过的土路数目。

Sample Input
5
1 2
1 3
1 4
4 5
4
W 5
A 1 4
W 5
A 4 5
W 5
W 2
A 1 2
A 1 3
Sample Output
2
1
0
1

标签:树上差分+线段树

考虑树上RMQ,以1号点为根,对于每个$A u v$,即将v的子树的权值全部加一,对于每个$W a$,即为a点的权值。
由于只有子树权值操作,我们可以用树上差分。
$c[i]$表示$i$和它的父结点的权值差,这样对于每个$A u v$,即$c[v]++$,对于每个$W a$,即为$sum(a)$
可以直接用树状数组维护,这样编程复杂度更低。

附上AC代码:

#include <iostream>
#include <cstdio>
#include <vector>
#define MAX_N 250000
using namespace std;
int n, m, tr[MAX_N+5], l[MAX_N+5], r[MAX_N+5], ind;
vector <int> G[MAX_N+5];
void DFS(int u) {
	l[u] = ++ind;
	for (int i = 0; i < G[u].size(); i++)	DFS(G[u][i]);
	r[u] = ind;
}
void inc(int pos) {for (; pos <= n; pos += pos&-pos)	tr[pos]++;}
void dec(int pos) {for (; pos <= n; pos += pos&-pos)	tr[pos]--;}
int sum(int pos) {int ret = 0;	for (; pos; pos -= pos&-pos)	ret += tr[pos];	return ret;}
int main() {
	scanf("%d", &n);
	for (int i = 1; i < n; i++) {int u, v;	scanf("%d%d", &u, &v);	G[u].push_back(v);}
	DFS(1);	for (int i = 2; i <= n; i++)	inc(l[i]), dec(r[i]+1);
	scanf("%d", &m);	m += n-1;
	while (m--) {
		char opt[1];	scanf("%s", opt);
		if (opt[0] == 'W') {
			int x;	scanf("%d", &x);
			printf("%d\n", sum(l[x]));
		}
		if (opt[0] == 'A') {
			int u, v;	scanf("%d%d", &u, &v);
			dec(l[v]), inc(r[v]+1);
		}
	}
	return 0;
}
posted @ 2017-09-25 16:46  Azrael_Death  阅读(211)  评论(0编辑  收藏  举报