卡特兰数:算出栈的序列数

http://blog.csdn.net/hackbuteer1/article/details/6902917

卡特兰数: - -!

24、问题描述:
12个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问排列方式有多少种?
这个笔试题,很YD,因为把某个递归关系隐藏得很深.

问题分析:
我们先把这12个人从低到高排列,然后,选择6个人排在第一排,那么剩下的6个肯定是在第二排.
用0表示对应的人在第一排,用1表示对应的人在第二排,那么含有6个0,6个1的序列,就对应一种方案.
比如000000111111就对应着
第一排:0 1 2 3 4 5
第二排:6 7 8 9 10 11
010101010101就对应着
第一排:0 2 4 6 8 10
第二排:1 3 5 7 9 11
问题转换为,这样的满足条件的01序列有多少个.
观察1的出现,我们考虑这一个出现能不能放在第二排,显然,在这个1之前出现的那些0,1对应的人
要么是在这个1左边,要么是在这个1前面.而肯定要有一个0的,在这个1前面,统计在这个1之前的0和1的个数.
也就是要求,0的个数大于1的个数.
OK,问题已经解决.
如果把0看成入栈操作,1看成出栈操作,就是说给定6个元素,合法的入栈出栈序列有多少个.
这就是catalan数,这里只是用于栈,等价地描述还有,二叉树的枚举,多边形分成三角形的个数,圆括弧插入公式中的
方法数,其通项是c(2n, n)/(n+1)。

性质

  令h(0)=1,h(1)=1,catalan数满足递归式:

 

  h(n)= h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)h(0) (其中n>=2),这是n阶递推关系;

 

  还可以化简为1阶递推关系: 如h(n)=(4n-2)/(n+1)*h(n-1)(n>1) h(0)=1

 

  该递推关系的解为:h(n)=C(2n,n)/(n+1)=P(2n,n)/(n+1)!=(2n)!/(n!*(n+1)!) (n=1,2,3,...)

 

  卡 塔兰数例的前几项为(sequence A 0 0 0 1 0 8 in OEIS) [注: n = 0, 1, 2, 3, … n]

 

  1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, …

应用

  我并不关心其解是怎么求出来的,我只想知道怎么用catalan数分析问题。

 

  我总结了一下,最典型的三类应用:(实质上却都一样,无非是递归等式的应用,就看你能不能分解问题写出递归式了)

 

  1.括号化问题。 

 

  矩阵链乘: P=a0×a1×a2×a3×……×an,共有(n+1)项,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n)种)

 

  类似题目:有N个节点的二叉树共有多少种情形?

 

  2.出栈次序问题。 

 

  一个栈(无穷大)的进栈序列为1,2,3,..n,有多少个不同的出栈序列?

 

  类似题目:有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)

 

  *

 

  * *

 

  * * *

 

  * * * *

 

  * * * * *

 

  形如这样的直角三角形网格,从左上角开始,只能向右走和向下走,问总共有多少种走法?

 

  问题的由来:编号为 1 到 n 的 n 个元素,顺序的进入一个栈,则可能的出栈序列有多少种?

 

  对问题的转化与思考:n 个元素进栈和出栈,总共要经历 n 次进栈和 n 次出栈。这就相当于对这 2n 步操作进行排列。

 

  一个模型:一个 n*n 的正方形网格,从左上角顶点到右下角顶点,只能向右走和向下走。问共有多少种走法。如果将向右走对应上述问题的出栈,向下走对应上述问题的进栈,那么,可 以视此模型为对上述问题的具体描述。而解决此问题,只要在总共从左上角到右下角的2n步中,选定向右走的步数,即共有C(n 2n)中走法。

 

  但是存在一个问题,如果走法越过了对角线,那么对应到上述问题是出栈数比入栈数多,这是不符合实际的。

 

  对以上模型进行处理,对角线将以上正方形网格分成两部分,只留下包含对角线在内的下半部分,那么就不会出现越过对角线的问题。而这问题就是开始提出的问题。

 

  -------------------------------------------------------

 

  问题等价于:n个1和n个0组成一2n位的2进制数,要求从左到右扫描,1的累计数不小于0的累计数,试求满足这条件的数有多少?

 

  解答: 设P2n为这样所得的数的个数。在2n位上填入n个1的方案数为 C(n 2n)

 

  不填1的其余n位自动填以数0。从C(n 2n)中减去不符合要求的方案数即为所求。

 

  不合要求的数指的是从左而右扫描,出现0的累计数超过1的累计数的数。

 

  不合要求的数的特征是从左而右扫描时,必然在某一奇数2m+1位上首先出现m+1个0的累计数,和m个1的累计数。

 

  此 后的2(n-m)-1位上有n-m个1,n-m-1个0。如若把后面这部分2(n-m)-1位,0与1交换,使之成为n-m个0,n-m-1个1,结果得 1个由n+1个0和n-1个1组成的2n位数,即一个不合要求的数对应于一个由n-1个1和n+1个0组成的一个排列。

 

  反过来,任何一个 由n+1个0,n-1个1组成的2n位数,由于0的个数多2个,2n是偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面的部分,令0 和1互换,使之成为由n个0和n个1组成的2n位数。即n+1个0和n-1个1组成的2n位数,必对应于一个不合要求的数。

 

  用上述方法建立了由n+1个0和n-1个1组成的2n位数,与由n个0和n个1组成的2n位数中从左向右扫描出现0的累计数超过1的累计数的数一一对应。

 

  例如 10100101

 

  是由4个0和4个1组成的8位2进制数。但从左而右扫描在第5位(显示为红色)出现0的累计数3超过1的累计数2,它对应于由3个1,5个0组成的10100010。

 

  反过来 10100010

 

  对应于 10100101

 

  因而不合要求的2n位数与n+1个0,n-1个1组成的排列一一对应,故有

 

  P2n = C(n 2n)— C(n+1 2n)

 

  这个结果是一个“卡塔兰数”Catalan

 

  3.将多边行划分为三角形问题。

 

  将一个凸多边形区域分成三角形区域的方法数?

 

  类似题目:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果他

 

  从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?

 

  类似题目:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?

 

 

 

posted @ 2012-04-07 17:58  A_zhu  阅读(2666)  评论(0编辑  收藏  举报