Sklearn笔记:缺失值处理


笔记:缺失值估算


单变量缺失

import numpy as np
from sklearn.impute import SimpleImputer

help(SimpleImputer):

class SimpleImputer(_BaseImputer):Imputation transformer for completing missing values.

Parameters(参数设置)

missing_values(缺失值类型) : number, string, np.nan (default) or None

The placeholder for the missing values. All occurrences of missing_values will be imputed.

strategy : string, default='mean'

The imputation strategy.

  • If "mean", then replace missing values using the mean along each column. Can only be used with numeric data.

  • If "median", then replace missing values using the median along each column. Can only be used with numeric data.

  • If "most_frequent", then replace missing using the most frequent value along each column. Can be used with strings or numeric data.

  • If "constant", then replace missing values with fill_value. Can be used with strings or numeric data.strategy="constant" for fixed value imputation.

fill_value : string or numerical value, default=None

When strategy == "constant", fill_value is used to replace all occurrences of missing_values.If left to the default, fill_value will be 0 when imputing numericaldata and "missing_value" for strings or object data types.

imp=SimpleImputer(missing_values=np.nan,strategy='mean')
imp.fit([[1,2],[np.nan,3],[7,6]])
SimpleImputer(add_indicator=False, copy=True, fill_value=None,
              missing_values=nan, strategy='mean', verbose=0)
##SimpleImputer类支持稀疏矩阵
import scipy.sparse as sp
X=sp.csc_matrix([[1,2],[0,-1],[8,4]])
imp=SimpleImputer(missing_values=-1,strategy='mean')
imp.fit(X)
SimpleImputer(add_indicator=False, copy=True, fill_value=None,
              missing_values=-1, strategy='mean', verbose=0)
X_test=sp.csc_matrix([[-1,2],[6,-1],[7,6]])
print(imp.transform(X_test))
  (0, 0)	3.0
  (1, 0)	6.0
  (2, 0)	7.0
  (0, 1)	2.0
  (1, 1)	3.0
  (2, 1)	6.0
print(imp.transform(X_test).toarray())
[[3. 2.]
 [6. 3.]
 [7. 6.]]
import pandas as pd
df=pd.DataFrame([['a','x'],
                [np.nan,'y'],
                ['a',np.nan],
                ['b','y']],dtype='category')
df
0 1
0 a x
1 NaN y
2 a NaN
3 b y
imp=SimpleImputer(strategy='most_frequent')
print(imp.fit_transform(df))
[['a' 'x']
 ['a' 'y']
 ['a' 'y']
 ['b' 'y']]

多元特征估计

使用IterativeImputer类,它将每一个特征的缺失值建模为其它特性的函数,并使用该估计值进行估计。
工作模式:迭代循环
在每一步,都指定一个功能列出作为输出

import numpy as np
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
imp=IterativeImputer(max_iter=10,random_state=0)
imp.fit([[1,2],[3,6],[4,8],[np.nan,3],[7,np.nan]])
IterativeImputer(add_indicator=False, estimator=None,
                 imputation_order='ascending', initial_strategy='mean',
                 max_iter=10, max_value=None, min_value=None,
                 missing_values=nan, n_nearest_features=None, random_state=0,
                 sample_posterior=False, skip_complete=False, tol=0.001,
                 verbose=0)
imp.transform([[1,2],[3,6],[4,8],[np.nan,3],[7,np.nan]])
array([[ 1.        ,  2.        ],
       [ 3.        ,  6.        ],
       [ 4.        ,  8.        ],
       [ 1.50004509,  3.        ],
       [ 7.        , 14.00004135]])
X_test = [[np.nan, 2], [6, np.nan], [np.nan, 6]]
print(imp.transform(X_test))
[[ 1.00007297  2.        ]
 [ 6.         12.00002754]
 [ 2.99996145  6.        ]]

K-近邻法

这个KNNImputer类提供了使用k-最近邻方法填充缺失值的估算。默认情况下,支持缺失值的欧氏距离度量,nan_euclidean_distances,用于查找最近的邻居。每个缺失的特性都使用n_neighbors具有该功能值的最近邻居。

from sklearn.impute import KNNImputer

help(KNNImputer):

Imputation for completing missing values using k-Nearest Neighbors.

(使用k近邻方法补全缺失值。)

Each sample's missing values are imputed using the mean value from n_neighbors nearest neighbors found in the training set. Two samples are close if the features that neither is missing are close.

(每个样本的缺失值是使用在训练集中找到的最近邻居的‘n_neighbors’的平均值来推算的.如果两个都不缺少的要素都不接近,则两个样本是接近的。)

Parameters:

missing_values : number, string, np.nan or None, default=np.nan

The placeholder for the missing values. All occurrences of missing_values will be imputed.

n_neighbors : int, default=5 Number of neighboring samples to use for imputation.

weights : {'uniform', 'distance'} or callable, default='uniform' Weight function used in prediction.

import numpy as np
from sklearn.impute import KNNImputer
nan = np.nan
X = [[1, 2, nan], [3, 4, 3], [nan, 6, 5], [8, 8, 7]]
print(X)
imputer = KNNImputer(n_neighbors=2, weights="uniform")
imputer.fit_transform(X)
[[1, 2, nan], [3, 4, 3], [nan, 6, 5], [8, 8, 7]]





array([[1. , 2. , 4. ],
       [3. , 4. , 3. ],
       [5.5, 6. , 5. ],
       [8. , 8. , 7. ]])

标记推算值

这个MissingIndicator转换器用于将数据集转换为相应的二进制矩阵,以指示数据集中是否存在缺失值。这种转换与计算相结合是很有用的。在使用估算时,保存有关哪些值丢失的信息可以提供信息。

from sklearn.impute import MissingIndicator

help(MissingIndicator):

class MissingIndicator(sklearn.base.TransformerMixin, sklearn.base.BaseEstimator)

Binary indicators for missing values(缺失值的二进制指示符).

MissingIndicator(missing_values=nan, features='missing-only', sparse='auto', error_on_new=True)

X = np.array([[-1, -1, 1, 3],
              [4, -1, 0, -1],
              [8, -1, 1, 0]])
indicator = MissingIndicator(missing_values=-1)
mask_missing_values_only = indicator.fit_transform(X)
mask_missing_values_only
array([[ True,  True, False],
       [False,  True,  True],
       [False,  True, False]])
#只返回存在缺失值的列的索引
indicator.features_
array([0, 1, 2, 3])
#这个features参数可以设置为'all'若要返回所有特征,无论它们是否包含缺失的值
indicator = MissingIndicator(missing_values=-1, features="all")
mask_all = indicator.fit_transform(X)
mask_all
array([[ True,  True, False, False],
       [False,  True, False,  True],
       [False,  True, False, False]])
indicator.features_
#特征所在的列索引
array([0, 1, 2, 3])
posted @ 2020-04-25 18:40  LgRun  阅读(1140)  评论(0编辑  收藏  举报