三角函数

三角函数基础知识

一、定义:

正弦: \(\sin A = \frac{a}{c} = \frac{对边}{斜边}\)

余弦: \(\cos A = \frac{b}{c} = \frac{邻边}{斜边}\)

正切: \(\tan A = \frac{a}{b} = \frac{对边}{邻边}\)

余切: \(\cot A = \frac{b}{a} = \frac{邻边}{对边}\)

特殊性质: |\(\sin \alpha\)| \(\leq 1\) , |\(\cos \alpha\)| \(\leq 1\)

二、特殊角三角函数

\(0°\) \(15°\) \(30°\) \(45°\) \(60°\) \(75°\) \(90°\)
\(\sin\) \(0\) \(\frac{\sqrt{6}-\sqrt{2}}{4}\) \(\frac{1}{2}\) \(\frac{\sqrt{2}}{2}\) \(\frac{\sqrt{3}}{2}\) \(\frac{\sqrt{6}+\sqrt{2}}{4}\) \(1\)
\(\cos\) \(0\) \(\frac{\sqrt{6}+\sqrt{2}}{4}\) \(\frac{\sqrt{3}}{2}\) \(\frac{\sqrt{2}}{2}\) \(\frac{1}{2}\) \(\frac{\sqrt{6}-\sqrt{2}}{4}\) \(0\)
\(\tan\) \(0\) \(2-\sqrt{3}\) \(\frac{\sqrt{3}}{3}\) \(1\) \(\sqrt{3}\) \(2+\sqrt{3}\) /
\(\cot\) / \(2+\sqrt{3}\) \(\sqrt{3}\) \(1\) \(\frac{\sqrt{3}}{3}\) \(2-\sqrt{3}\) \(0\)

三、基本公式

  1. \(\angle A + \angle B = 90°\) ,则 \(\sin A = \cos B\) , \(\tan A = \cot B\)

  2. \(\tan A \cdot \cot A = 1\)

  3. \(\tan A = \frac{\sin A}{\cos A}\)

  4. \(\sin^2 A + \cos^2 A = 1\)

四、三角形面积公式

五、两角和差公式

\(\sin (\alpha \pm \beta) = \sin \alpha \cdot \cos \beta \pm \sin \beta \cdot \cos \alpha\)

\(\cos (\alpha \pm \beta) = \cos \alpha \cdot \cos \beta \mp \sin \alpha \cdot \sin \beta\)

\(\tan (\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \cdot \tan \beta}\)

六、倍角公式

\(\sin 2 \alpha = 2 \sin \alpha \cdot \cos \alpha\)

\(\cos 2 \alpha = \cos^2 \alpha - sin^2 \alpha = 1-2\sin^2 \alpha = 2\cos^2 \alpha -1\)

\(\tan 2 \alpha = \frac{2\tan \alpha}{1-\tan^2 \alpha}\)

七、直线斜率

  1. |\(k\)| \(= \tan \theta\) , \(\theta\) 为该直线与 \(x\) 轴相交所形成的最小夹角

(以上都是初中内容,现在来点高中的)

八、半角公式

\(|\sin \frac{\alpha}{2}| = \sqrt{\frac{1 - \cos \alpha}{2}}\)

\(|\cos \frac{\alpha}{2}| = \sqrt{\frac{1 + \cos \alpha}{2}}\)

\(\tan\frac{\alpha}{2} = \frac{1 - \cos\alpha}{\sin\alpha} = \frac{\sin \alpha}{1 + \cos\alpha}\)

九、万能公式

\[\begin{cases} \cos \theta = \frac{1 - \tan ^ 2\frac{\theta}{2}}{1 + \tan ^ 2\frac{\theta}{2}} \\ \sin \theta = \frac{2\tan\frac{\theta}{2}}{1 + \tan ^ 2\frac{\theta}{2}} \end{cases} \]

十、和差化积,积化和差

\[\sin\alpha + \sin\beta = 2\sin\frac{\alpha +\beta}{2}\cos\frac{\alpha - \beta}{2} \]

\[\sin\alpha -\sin\beta = 2\sin\frac{\alpha -\beta}{2}\cos\frac{\alpha + \beta}{2} \]

\[\cos \alpha + \cos\beta = 2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha -\beta}{2} \]

\[\cos \alpha -\cos\beta = -2\sin\frac{\alpha + \beta}{2}\sin\frac{\alpha -\beta}{2} \]

\[\sin \alpha\cos\beta = \frac{1}{2}\left(\sin(\alpha + \beta) + \sin(\alpha - \beta)\right) \]

\[\sin\beta\cos\alpha = \frac{1}{2}(\sin(\alpha + \beta) - \sin(\alpha - \beta)) \]

\[\cos\alpha\cos\beta = \frac{1}{2}(\cos(\alpha + \beta) + \cos(\alpha - \beta)) \]

\[\sin\alpha\sin\beta = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta)) \]

十一、正余弦定理

\[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \]

\[\cos A = \frac{b ^ 2 + c ^ 2 - a ^ 2}{2bc} \]

\[a ^ 2 = b ^ 2 + c ^ 2 - 2bc\cos A \]

十二、神秘公式(两次和差化积)

\[\sin^2x-\sin^2y =(\sin x + \sin y)(\sin x - \sin y)=\sin(x-y)\sin(x+y) \]

\[\cos^2x-\cos^2y=(\cos x+\cos y)(\cos x - \cos y) = -\sin(x-y)\sin(x+y) \]

posted @ 2020-05-31 10:03  AxDea  阅读(11086)  评论(0编辑  收藏  举报