bzoj 1563: [NOI2009]诗人小G
学习了一下决策单调优化……实际上就是奥妙重重的双向队列啦……队列里维护决策的位置以及该决策最优的范围。
不停弹出队头的元素直到当前位置在队头元素最优的范围内。
每次把当前决策插入队尾,并弹出没它优的答案……
然后就是\(O(nlogn)\)的了
#include <bits/stdc++.h> using namespace std; #define N 200000 #define LL long long #define LD long double int T; int n, l, p; int ai[N], sum[N]; LD F[N]; struct node { int fs, lb, rb; }; node Q[N]; int fr, tl; LD powi(LL a, LL b) { LD c = 1; while (b --) c *= a; return c; } LD get(int a, int b) { return F[a] + powi(abs((sum[b] - sum[a] + b - a - 1) - l), p); } int main() { //freopen("A.in", "r", stdin); scanf("%d", &T); while (T --) { scanf("%d%d%d", &n, &l, &p); for (int i = 1; i <= n; ++ i) { char ch[40]; scanf("%s", ch); sum[i] = sum[i - 1] + strlen(ch); } Q[0] = ((node){0, 1, n}); fr = 0; tl = 1; for (int i = 1; i <= n; ++ i) { while (Q[fr].rb < i) Q[fr ++] = ((node){0, 1, n}); F[i] = get(Q[fr].fs, i); while (get(i, Q[tl - 1].lb) < get(Q[tl - 1].fs, Q[tl - 1].lb)) Q[-- tl] = ((node){0, 1, n}); { int l = Q[tl - 1].lb, r = Q[tl - 1].rb; while (l < r) { int md = (l + r + 1) / 2; if (get(i, md) < get(Q[tl - 1].fs, md)) r = md - 1; else l = md; } if (l >= n) continue; Q[tl - 1].rb = l; Q[tl ++] = ((node){i, l + 1, n}); } } if (F[n] > 1000000000000000000ll) puts("Too hard to arrange"); else printf("%lld\n", (LL)(F[n] + 0.5)); puts("--------------------"); } }