随笔 - 2649  文章 - 2452  评论 - 0  阅读 - 80424

NumPy 数学函数

NumPy 数学函数

NumPy 包含大量的各种数学运算的函数,包括三角函数,算术运算的函数,复数处理函数等。

三角函数

NumPy 提供了标准的三角函数:sin()、cos()、tan()。

实例

import numpy as np
 
a = np.array([0,30,45,60,90])
print ('不同角度的正弦值:')
# 通过乘 pi/180 转化为弧度  
print (np.sin(a*np.pi/180))
print ('\n')
print ('数组中角度的余弦值:')
print (np.cos(a*np.pi/180))
print ('\n')
print ('数组中角度的正切值:')
print (np.tan(a*np.pi/180))

输出结果为:

不同角度的正弦值:
[0.         0.5        0.70710678 0.8660254  1.        ]


数组中角度的余弦值:
[1.00000000e+00 8.66025404e-01 7.07106781e-01 5.00000000e-01
 6.12323400e-17]


数组中角度的正切值:
[0.00000000e+00 5.77350269e-01 1.00000000e+00 1.73205081e+00
 1.63312394e+16]

arcsin,arccos,和 arctan 函数返回给定角度的 sin,cos 和 tan 的反三角函数。

这些函数的结果可以通过 numpy.degrees() 函数将弧度转换为角度。

实例

import numpy as np
 
a = np.array([0,30,45,60,90])  
print ('含有正弦值的数组:')
sin = np.sin(a*np.pi/180)  
print (sin)
print ('\n')
print ('计算角度的反正弦,返回值以弧度为单位:')
inv = np.arcsin(sin)  
print (inv)
print ('\n')
print ('通过转化为角度制来检查结果:')
print (np.degrees(inv))
print ('\n')
print ('arccos 和 arctan 函数行为类似:')
cos = np.cos(a*np.pi/180)  
print (cos)
print ('\n')
print ('反余弦:')
inv = np.arccos(cos)  
print (inv)
print ('\n')
print ('角度制单位:')
print (np.degrees(inv))
print ('\n')
print ('tan 函数:')
tan = np.tan(a*np.pi/180)  
print (tan)
print ('\n')
print ('反正切:')
inv = np.arctan(tan)  
print (inv)
print ('\n')
print ('角度制单位:')
print (np.degrees(inv))

输出结果为:

含有正弦值的数组:
[0.         0.5        0.70710678 0.8660254  1.        ]


计算角度的反正弦,返回值以弧度为单位:
[0.         0.52359878 0.78539816 1.04719755 1.57079633]


通过转化为角度制来检查结果:
[ 0. 30. 45. 60. 90.]


arccos 和 arctan 函数行为类似:
[1.00000000e+00 8.66025404e-01 7.07106781e-01 5.00000000e-01
 6.12323400e-17]


反余弦:
[0.         0.52359878 0.78539816 1.04719755 1.57079633]


角度制单位:
[ 0. 30. 45. 60. 90.]


tan 函数:
[0.00000000e+00 5.77350269e-01 1.00000000e+00 1.73205081e+00
 1.63312394e+16]


反正切:
[0.         0.52359878 0.78539816 1.04719755 1.57079633]


角度制单位:
[ 0. 30. 45. 60. 90.]

舍入函数

numpy.around() 函数返回指定数字的四舍五入值。

numpy.around(a,decimals)

参数说明:

  • a: 数组
  • decimals: 舍入的小数位数。 默认值为0。 如果为负,整数将四舍五入到小数点左侧的位置

实例

import numpy as np
 
a = np.array([1.0,5.55,  123,  0.567,  25.532])  
print  ('原数组:')
print (a)
print ('\n')
print ('舍入后:')
print (np.around(a))
print (np.around(a, decimals =  1))
print (np.around(a, decimals =  -1))

输出结果为:

原数组:
[  1.      5.55  123.      0.567  25.532]


舍入后:
[  1.   6. 123.   1.  26.]
[  1.    5.6 123.    0.6  25.5]
[  0.  10. 120.   0.  30.]

numpy.floor()

numpy.floor() 返回小于或者等于指定表达式的最大整数,即向下取整。

实例

import numpy as np
 
a = np.array([-1.7,  1.5,  -0.2,  0.6,  10])
print ('提供的数组:')
print (a)
print ('\n')
print ('修改后的数组:')
print (np.floor(a))

输出结果为:

提供的数组:
[-1.7  1.5 -0.2  0.6 10. ]


修改后的数组:
[-2.  1. -1.  0. 10.]

numpy.ceil()

numpy.ceil() 返回大于或者等于指定表达式的最小整数,即向上取整。

实例

import numpy as np
 
a = np.array([-1.7,  1.5,  -0.2,  0.6,  10])  
print  ('提供的数组:')
print (a)
print ('\n')
print ('修改后的数组:')
print (np.ceil(a))

输出结果为:

提供的数组:
[-1.7  1.5 -0.2  0.6 10. ]


修改后的数组:
[-1.  2. -0.  1. 10.]
posted on   AtlasLapetos  阅读(9)  评论(0编辑  收藏  举报
编辑推荐:
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

点击右上角即可分享
微信分享提示