随笔 - 2649  文章 - 2452  评论 - 0  阅读 - 80424

Pandas JSON

Pandas JSON

JSON(JavaScript Object Notation,JavaScript 对象表示法),是存储和交换文本信息的语法,类似 XML。

JSON 比 XML 更小、更快,更易解析,更多 JSON 内容可以参考 JSON 教程

Pandas 可以很方便的处理 JSON 数据,本文以 sites.json 为例,内容如下:

[
   {
   "id": "A001",
   "name": "菜鸟教程",
   "url": "www.runoob.com",
   "likes": 61
   },
   {
   "id": "A002",
   "name": "Google",
   "url": "www.google.com",
   "likes": 124
   },
   {
   "id": "A003",
   "name": "淘宝",
   "url": "www.taobao.com",
   "likes": 45
   }
]
import pandas as pd

df = pd.read_json('sites.json')
   
print(df.to_string())

to_string() 用于返回 DataFrame 类型的数据,我们也可以直接处理 JSON 字符串。

import pandas as pd

data =[
    {
      "id": "A001",
      "name": "菜鸟教程",
      "url": "www.runoob.com",
      "likes": 61
    },
    {
      "id": "A002",
      "name": "Google",
      "url": "www.google.com",
      "likes": 124
    },
    {
      "id": "A003",
      "name": "淘宝",
      "url": "www.taobao.com",
      "likes": 45
    }
]
df = pd.DataFrame(data)

print(df)

以上实例输出结果为:

     id    name             url  likes
0  A001    菜鸟教程  www.runoob.com     61
1  A002  Google  www.google.com    124
2  A003      淘宝  www.taobao.com     45

JSON 对象与 Python 字典具有相同的格式,所以我们可以直接将 Python 字典转化为 DataFrame 数据:

import pandas as pd


# 字典格式的 JSON                                                                                              
s = {
    "col1":{"row1":1,"row2":2,"row3":3},
    "col2":{"row1":"x","row2":"y","row3":"z"}
}

# 读取 JSON 转为 DataFrame                                                                                           
df = pd.DataFrame(s)
print(df)

以上实例输出结果为:

      col1 col2
row1     1    x
row2     2    y
row3     3    z

从 URL 中读取 JSON 数据:

import pandas as pd

URL = 'https://static.jyshare.com/download/sites.json'
df = pd.read_json(URL)
print(df)

以上实例输出结果为:

     id    name             url  likes
0  A001    菜鸟教程  www.runoob.com     61
1  A002  Google  www.google.com    124
2  A003      淘宝  www.taobao.com     45

内嵌的 JSON 数据

假设有一组内嵌的 JSON 数据文件 nested_list.json

{
    "school_name": "ABC primary school",
    "class": "Year 1",
    "students": [
    {
        "id": "A001",
        "name": "Tom",
        "math": 60,
        "physics": 66,
        "chemistry": 61
    },
    {
        "id": "A002",
        "name": "James",
        "math": 89,
        "physics": 76,
        "chemistry": 51
    },
    {
        "id": "A003",
        "name": "Jenny",
        "math": 79,
        "physics": 90,
        "chemistry": 78
    }]
}

使用以下代码格式化完整内容:

import pandas as pd

df = pd.read_json('nested_list.json')

print(df)

以上实例输出结果为:

          school_name   class                                           students
0  ABC primary school  Year 1  {'id': 'A001', 'name': 'Tom', 'math': 60, 'phy...
1  ABC primary school  Year 1  {'id': 'A002', 'name': 'James', 'math': 89, 'p...
2  ABC primary school  Year 1  {'id': 'A003', 'name': 'Jenny', 'math': 79, 'p...

这时我们就需要使用到 json_normalize() 方法将内嵌的数据完整的解析出来:

import pandas as pd
import json

# 使用 Python JSON 模块载入数据
with open('nested_list.json','r') as f:
    data = json.loads(f.read())

# 展平数据
df_nested_list = pd.json_normalize(data, record_path =['students'])
print(df_nested_list)

以上实例输出结果为:

     id   name  math  physics  chemistry
0  A001    Tom    60       66         61
1  A002  James    89       76         51
2  A003  Jenny    79       90         78

data = json.loads(f.read()) 使用 Python JSON 模块载入数据。

json_normalize() 使用了参数 record_path 并设置为 ['students'] 用于展开内嵌的 JSON 数据 students

显示结果还没有包含 school_name 和 class 元素,如果需要展示出来可以使用 meta 参数来显示这些元数据:

import pandas as pd
import json

# 使用 Python JSON 模块载入数据
with open('nested_list.json','r') as f:
    data = json.loads(f.read())

# 展平数据
df_nested_list = pd.json_normalize(
    data, 
    record_path =['students'], 
    meta=['school_name', 'class']
)
print(df_nested_list)

以上实例输出结果为:

     id   name  math  physics  chemistry         school_name   class
0  A001    Tom    60       66         61  ABC primary school  Year 1
1  A002  James    89       76         51  ABC primary school  Year 1
2  A003  Jenny    79       90         78  ABC primary school  Year 1

接下来,让我们尝试读取更复杂的 JSON 数据,该数据嵌套了列表和字典,数据文件 nested_mix.json 如下:

{
    "school_name": "local primary school",
    "class": "Year 1",
    "info": {
      "president": "John Kasich",
      "address": "ABC road, London, UK",
      "contacts": {
        "email": "admin@e.com",
        "tel": "123456789"
      }
    },
    "students": [
    {
        "id": "A001",
        "name": "Tom",
        "math": 60,
        "physics": 66,
        "chemistry": 61
    },
    {
        "id": "A002",
        "name": "James",
        "math": 89,
        "physics": 76,
        "chemistry": 51
    },
    {
        "id": "A003",
        "name": "Jenny",
        "math": 79,
        "physics": 90,
        "chemistry": 78
    }]
}

nested_mix.json 文件转换为 DataFrame:

import pandas as pd
import json

# 使用 Python JSON 模块载入数据
with open('nested_mix.json','r') as f:
    data = json.loads(f.read())
    
df = pd.json_normalize(
    data, 
    record_path =['students'], 
    meta=[
        'class',
        ['info', 'president'], 
        ['info', 'contacts', 'tel']
    ]
)

print(df)

以上实例输出结果为:

     id   name  math  physics  chemistry   class info.president info.contacts.tel
0  A001    Tom    60       66         61  Year 1    John Kasich         123456789
1  A002  James    89       76         51  Year 1    John Kasich         123456789
2  A003  Jenny    79       90         78  Year 1    John Kasich         123456789

读取内嵌数据中的一组数据

以下是实例文件 nested_deep.json,我们只读取内嵌中的 math 字段:

{
    "school_name": "local primary school",
    "class": "Year 1",
    "students": [
    {
        "id": "A001",
        "name": "Tom",
        "grade": {
            "math": 60,
            "physics": 66,
            "chemistry": 61
        }
  
    },
    {
        "id": "A002",
        "name": "James",
        "grade": {
            "math": 89,
            "physics": 76,
            "chemistry": 51
        }
        
    },
    {
        "id": "A003",
        "name": "Jenny",
        "grade": {
            "math": 79,
            "physics": 90,
            "chemistry": 78
        }
    }]
}

这里我们需要使用到 glom 模块来处理数据套嵌,glom 模块允许我们使用 . 来访问内嵌对象的属性。

第一次使用我们需要安装 glom:

pip3 install glom

实例

import pandas as pd
from glom import glom

df = pd.read_json('nested_deep.json')

data = df['students'].apply(lambda row: glom(row, 'grade.math'))
print(data)

以上实例输出结果为:

0    60
1    89
2    79
Name: students, dtype: int64
posted on   AtlasLapetos  阅读(3)  评论(0编辑  收藏  举报
编辑推荐:
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

点击右上角即可分享
微信分享提示