[转]Hive/Beeline 使用笔记
FROM : http://www.7mdm.com/1407.html
Hive:
利用squirrel-sql 连接hive
add driver -> name&example url(jdbc:hive2://xxx:10000)->extra class path ->Add
{hive/lib/hive-common-*.jar
hive/lib/hive-contrib-*.jar
hive/lib/hive-jdbc-*.jar
hive/lib/libthrift-*.jar
hive/lib/hive-service-*.jar
hive/lib/httpclient-*.jar
hive/lib/httpcore-*.jar
hadoop/share/hadoop/common/hadoop-common--*.jar
hadoop/share/hadoop/common/lib/common-configuration-*.jar
hadoop/share/hadoop/common/lib/log4j-*.jar
hadoop/share/hadoop/common/lib/slf4j-api-*.jar
hadoop/share/hadoop/common/lib/slf4j-log4j-*.jar}
->List Drivers(wait ..then class name will auto set org.apache.hive.jdbc/HiveDriver)->OK->Add aliases ->chose the hive driver->done
Hive数据迁移
1.导出表
EXPORT TABLE <table_name> TO
'path/to/hdfs'
;
2.复制数据到另一个hdfs
hadoop distcp hdfs:
//
:8020
/path/to/hdfs
hdfs:
///path/to/hdfs
3.导入表
IMPORT TABLE <table_name> FROM
'path/to/another/hdfs'
;
Hive 输出查询结果到文件
输出到本地文件:
insert overwrite local directory './test-04'
row format delimited
FIELDS TERMINATED BY '\t'
COLLECTION ITEMS TERMINATED BY ','
MAP KEYS TERMINATED BY ':'
select * from src;
输出到hdfs:
输出到hdfs好像不支持 row format,只能另辟蹊径了
INSERT OVERWRITE DIRECTORY '/outputable.txt'
select concat(col1, ',', col2, ',', col3) from myoutputtable;
当然默认的分隔符是\001
若要直接对文件进行操作课直接用stdin的形式
eg. hadoop fs -cat ../000000_0 |python doSomeThing.py
#!/usr/bin/env python
import sys
for line in sys.stdin:
(a,b,c)=line.strip().split('\001')
Hive 语法:
hive好像不支持select dicstinct col1 as col1 from table group by col1
需要用grouping sets
select col1 as col1 from table group by col1 grouping sets((col1))
Beeline:
文档:https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
利用jdbc连接hive:
hive2='JAVA_HOME=/opt/java7 HADOOP_HOME=/opt/hadoop /opt/hive/bin/beeline -u jdbc:hive2://n1.hd2.host.dxy:10000 -n hadoop -p fake -d org.apache.hive.jdbc.HiveDriver --color=true --silent=false --fastConnect=false --verbose=true'
beeline利用jdbc连接hive若需要执行多条命令使用
hive2 -e "xxx" -e "yyy" -e...
申明
非源创博文中的内容均收集自网上,若有侵权之处,请及时联络,我会在第一时间内删除.再次说声抱歉!!!
博文欢迎转载,但请给出原文连接。