一句T-SQL语句引发的思考

优化一句T-SQL语句引发的思考

最近WWW.CSDN.NET上有一个帖子:
http://expert.csdn.net/Expert/topic/2630/2630484.xml?temp=.9921686

问题是这样:
 有表Stress_test(id  int, key char(2))
        id 上有普通索引;
        key 上有簇索引;
        id 有有限量的重复;
        key 有无限量的重复;

现在我需要按逻辑与查询表中key='Az' AND key='Bw' AND key='Cv' 的id

求教高手最有效的查询语句

测试环境:
    
Hardware:P4 2.6+512M+80G
     Software:windows server 2003(Enterprise Edition)+Sqlserver 2000 +sp3a

  首先我们建立一个测试的数据,为使数据尽量的分布和随即,我们通过RAND()来随机产生2个随机数再组合成一个字符串,首先插入的数据是1,000,000条记录,然后在循环插入到58,000,000条记录。
   因为是随机产生的数据,所以如果你自己测试的数据集和我测试的会不一样,但对索引的优化和运行的效率是一样的。
   下面的“--//测试脚本”是产生测试数据的脚本,你可以根据需要修改 @maxgroup, @maxLoop的值,比如测试1百万的记录可以:

     Select @maxgroup=1000
     Select @maxLoop=1000

如果要测试5千万:

     Select @maxgroup=5000
     Select @maxLoop=10000

所以如果你的SERVER或PC比较慢,请耐心等待.....,
 (在我的PC上运行的速度是插入1百万条的时间是1.14m,插入5千八百万条的时间是19.41m,重新建立INDEX的时间是34.36m)

 

作为一般的开发人员很容易就想到的语句:

   --语句1

    select a.[id] from 
    (select distinct [id] from stress_test where [key] = 'Az') a,
    (select distinct [id] from stress_test where [key] = 'Bw') b ,
    (select distinct [id] from stress_test where [key] = 'Cv') c
    where a.id = b.id and a.id = c.id

   --语句2

     select [id] 
     from stress_test 
     where [key]='Az' or [key]='Bw' or [key]='Cv'
     group by id having(count(distinct [key])=3)
  

   --语句5

    SELECT distinct a.[id] FROM stress_test AS a,stress_test AS b,stress_test AS c
    WHERE a.[key]='Az' AND b.[key]='Bw' AND c.[key]='Cv'
      AND a.[id]=b.[id] AND a.[id]=c.[id]

但作为T-SQL的所谓“高手”可能会认为这种写法很“土”,也显得没有水平,所以会选择一些子查询和外连接的写法,按常理子查询的效率是比较高的:

   --语句3

    select distinct [id] from stress_test A where
    not exists (
    select 1 from
     (select 'Az' as k union all select 'Bw' union all select 'Cv') B
    left join stress_test C on  C.id=A.id and B.[k]=C.[key]
    where C.id is null)

   --语句4

     select distinct a.id from stress_test a
     where not exists
     ( select * from keytb c
      where not exists
      ( select * from stress_test b
       where
             b.id = a.id
             and
             c.kf1 = b.[key]
       )
     )

我们先分析这几条语句(针对5千8百万条数据进行分析):

请大家要特别留心Estimated row count的值。

语句1:从执行规划中我们可以看出,MSSQLSERVER选择的索引优化非常有规律,先通过CLUSTERED INDEX筛选出符合[KEY]='Az'条件的ID,然后进行HASH MATCH,在找出ID相等的;依次类推最终检索到符合所有条件的记录。中间的Estimated row count的值都不大。

语句2:从执行规划中我们可以看出,是先通过CLUSTERED INDEX筛选出符合 [key]='Az' or [key]='Bw' or [key]='Cv' 符合所有条件的ID,然后分组进行2次HASH MATCH 所有的ID。我们可以看出Estimated row count的值是越来越少,从最初的369,262到最后排序的只有402。

语句3:从执行规划中我们可以看是非常复杂的,是先通过3组 通过CONSTANT SCAN和NON-CLUSTERED INDEX检索出符合 A.ID=C.ID AND [key]='**' 的记录3组,然后分组进行外键匹配,再将3组的数据合并,排序,然后再和一个NON-CLUSTERED INDEX检索出的记录集进行外键匹配,我们可以看出MSSQLSERVER会对所有的记录(5千万条)记录进行分组,Estimated row count的值是:58,720,000,所以这句T-SQL的瓶颈是对5千万条记录进行分组。

语句4:从执行规划中我们可以看和语句3有相似之处,都要对所有的记录(5千万条)记录进行分组,所以这是检索的瓶颈,而且使用的索引都是NON-CLUSTERED INDEX。

语句5:从执行规划中我们可以看出,先通过CLUSTERED INDEX检索出符合[Key]='Az'的记录集,然后进行HASH MATCH和SORTS,因为数量少所以是非常会的,在和通过NON-CLUSTERED INDEX检索[KEY]='Bw'的记录进行INNER JOIN,在和通过CLUSTERED INDEX检索[KEY]='Cv'的记录进行合并,最后是对4百万条数据进行分组检索,如果是6列,我们可以看出Estimated row count的值是递增,越来越大,最后的分组检索的Estimated row count的值是3.46E+15,这已经形成巨大的瓶颈。

我们可以先测试一下小的数据量(50000条);

大家可以下面测试脚本的:

   Select @maxgroup=500
   Select @maxLoop=100

----------------------------------------------------------------------
 |------------------语句 1----语句 2----语句 3----语句 4----语句 5----|
 | 5万(3列)        5ms       19ms     37ms     59ms      0ms
 | 5万(6列)        1ms       26ms     36ms     36ms     1ms
 

从测试的的数据来看,语句5的效率是最高的,几乎没有花费时间,而语句2的效率只能说是一般。如果测试到这里就结束了,我们可以毫不犹豫的选择语句 5 :-(,继续进行下面的测试.....

我们测试百万条以上的记录:
 1.先对1百万条记录进行测试(选取3列)
 2.先对1百万条记录进行测试(选取6列)
 3.对5千万条数据测试(选取3列)
 4.对5千万条数据测试(选取6列)

统计表1:
 
----------------------------------------------------------------------
 |------------------语句 1----语句 2----语句 3----语句 4----语句 5----|
 | 1百万(3列)    0.77%     0.41%    49.30%     48.99%     0.52%
 | 1百万(6列)     1.61%     0.81%    48.99%     47.44%     1.14%
 | 5千万(3列)     0.14%     0.18%    48.88%     48.86%     1.93%
 | 5千万(6列)     0.00%     0.00%     0.00%      0.00%   100.00%
统计表2:
 
----------------------------------------------------------------------
 |------------------语句 1----语句 2----语句 3----语句 4----语句 5----|
 | 1百万(3列)     9ms       22ms     723ms     753ms      4ms
 | 1百万(6列)      15ms      38ms     764ms     773ms     11ms
 | 5千万(3列)     575ms     262ms  110117ms  110601ms  12533ms
 | 5千万(6列)    1070ms     576ms  107988ms  109704ms     10m以上


测试总结:(我们可以比较关注:语句 2和语句 5)
1.在1百万条记录的情况下,语句 5是最快的,但在5千万条记录下是最慢的。这说明INDEX的优化一定的情况下,数据量不同,检索的效率也是不同的。我们平时在写T-SQL时一般关注的时INDEX的使用,只要我们写的T-SQL是利用CLUSTERED INDEX,我们就认为是最优化了,其实这是一个误区,我们还要关注Estimated row count的值,大量的I/O操作是我们应该关注的,所以我们应该根据数据量的不同选择相应的T-SQL语句,不要认为在小数据量下是最高的在大数据量的状态下也许是最慢的:-(。

2.在执行规划中最快的,并不是运行最快的,我们可以看在1百万(6列)在这行中,语句 2和语句 5的比例是0.81%:1.14%,但实际的运行效率是,38ms:11ms。所以,我们在选择T-SQL是要考虑本地I/O的速度,所以在优化语句时不仅要看执行规划还要计算一下具体的效率。

在测试的语句上加入:

    SET STATISTICS TIME  ON/OFF
    SET STATISTICS IO  ON/OFF
是一个很好的调试方法。


3.综合评价,语句 2的效率是最高的,执行效率没有随数据量变化而有很大的差别。

4.执行规划越简单的语句(语句1),综合效率越高,反之则越低(语句3,语句4)。

5.在平时写T-SQL语句时,一定要根据不同的数据量进行测试,虽然都是用CLUSTERED INDEX,但检索的效率却大相径庭。

--//测试脚本
USE Northwind
GO
if exists(select * from sysobjects where name=N'stress_test' and type='U')
Drop table stress_test
GO
--//定义测试的表stress_test,存放所有的测试数据
Create table stress_test([id] int,[key] char(2))

GO
--//插入测试的数据
Set nocount on
--//变量定义
Declare @id int   
--//Stress_test ID 值
Declare @key char(2)  
--//Stress_test [key] 值
Declare @maxgroup int  
--//组最大的循环数
Declare @maxLoop int  
--//ID最大的循环数
Declare @tempGroup int  --//临时变量
Declare @tempLoop int  --//临时变量
Declare @tempint1 int  
--//临时变量
Declare @tempint2 int  
--//临时变量
Declare @rowcount int  --//记录事务提交的行数

--//初始化变量
Select @id=1
Select @maxgroup=1000
Select @maxLoop=1000
Select @tempGroup=1
Select @tempLoop=1
Select @key=''
Select @rowcount=0

while @tempLoop<=@maxLoop
begin
 while @tempGroup<
=@maxGroup
 begin
  select @tempint1=65+convert(int,rand()*50)
  select @tempint2=65+convert(int,rand()*100)
  if (@tempint1>=122 or @tempint2>=122)
    begin
    select @tempint1=@tempint1-100
    select @tempint2=@tempint2-100
   
    if (@tempint1<=65 or @tempint2<=65)
     begin
     select @tempint1=@tempint1+57
     select @tempint2=@tempint2+57
    end
   end
  select @key=char(@tempint1)+char(@tempint2)
  if @rowcount=0
  begin tran ins
     insert into stress_test([id],[key])values(@id,@key)
       select @rowcount=@rowcount+1
  
   if @rowcount>3000 --//判断当行数达到3000条时,开始提交事务
   begin
       commit tran ins
      select @rowcount=0
   end
  
  select @tempGroup=@tempgroup+1
 end
 if @rowcount>0
 begin
  commit tran ins
  select @rowcount=0
 end

 select @tempGroup=1
 select @id=@id+1
 select @tempLoop=@tempLoop+1
end
GO
--//删除KEY值为NULL的记录
delete stress_test where [key]is null
GO
--//建立簇索引PK_STRESS
Create Clustered index pk_stress on stress_test([Key])
--//建立非簇索引NI_STRESS_ID
Create NonClustered index NI_stress_id on stress_test([id])
GO
--//定义测试的表keytb
if exists(select * from sysobjects where name=N'keytb' and type='U')
Drop table keytb
GO
create table keytb  
-----//存放你需要匹配的值的表
(
  kf1  varchar(20)
)

--//存放你需要匹配的值,暂定为三个
insert into keytb(kf1) values('Az');
insert into keytb(kf1) values('Bw');
insert into keytb(kf1) values('Cv');

--insert into keytb(kf1) values('Du');
--insert into keytb(kf1) values('Ex');
--insert into keytb(kf1) values('Fy');
GO


下面我们就开始测试几种T-SQL的INDEX优化问题:

--先对1百万条/1亿条记录进行测试(选取3列)的T-SQL:

PRINT '第一种语句:'
SET STATISTICS TIME  ON
SET STATISTICS IO  ON
select a.[id] from
(select distinct [id] from stress_test where [key] = 'Az') a,
(select distinct [id] from stress_test where [key] = 'Bw') b ,
(select distinct [id] from stress_test where [key] = 'Cv') c
where a.id = b.id and a.id = c.id
GO
PRINT '第二种语句:'
select [id]
from stress_test 
where [key]='Az' or [key]='Bw' or [key]='Cv'
group by id having(count(distinct [key])=3)
GO
PRINT '第三种语句:'
select distinct [id] from stress_test A where
not exists (
select 1 from
(select 'Az' as k union all select 'Bw' union all select 'Cv') B
left join stress_test C on  C.id=A.id and B.[k]=C.[key]
where C.id is null)
GO
PRINT '第四种语句:'
select distinct a.id from stress_test a
 where not exists
 ( select * from keytb c
   where not exists
   ( select * from stress_test b
     where
       b.id = a.id
       and
       c.kf1 = b.[key]
   )
 )
GO
PRINT '第五种语句:'
SELECT distinct a.[id] FROM stress_test AS a,stress_test AS b,stress_test AS c
WHERE a.[key]='Ac' AND b.[key]='Bb' AND c.[key]='Ca'
      AND a.[id]=b.[id] AND a.[id]=c.[id]

GO
SET STATISTICS TIME  OFF
SET STATISTICS IO  OFF

--先对1百万条/1亿条记录进行测试(选取6列)的T-SQL:
PRINT '第一种语句:'
SET STATISTICS TIME  ON
SET STATISTICS IO  ON
select a.[id] from
(select distinct [id] from stress_test where [key] = 'Az') a,
(select distinct [id] from stress_test where [key] = 'Bw') b ,
(select distinct [id] from stress_test where [key] = 'Cv') c,
(select distinct [id] from stress_test where [key] = 'Du') d,
(select distinct [id] from stress_test where [key] = 'Ex') e,
(select distinct [id] from stress_test where [key] = 'Fy') f
where a.[id] = b.[id] and a.[id] = c.[id] and a.[id] = d.[id] and a.[id] = e.[id] and a.[id] = f.[id]
GO
PRINT '第二种语句:'
select [id]
from stress_test 
where [key]='Az' or [key]='Bw' or [key]='Cv' or [Key]='Du'or [Key]='Ex'or [Key]='Fy'
group by id having(count(distinct [key])=6)
GO
PRINT '第三种语句:'
select distinct [id] from stress_test A where
not exists (
select 1 from
(select 'Az' as k union all select 'Bw' union all select 'Cv'union all select 'Du'union all select 'Ex'union all select 'Fy') B
left join stress_test C on  C.id=A.id and B.[k]=C.[key]
where C.id is null)
GO
PRINT '第四种语句:'
select distinct a.id from stress_test a
 where not exists
 ( select * from keytb c
   where not exists
   ( select * from stress_test b
     where
       b.id = a.id
       and
       c.kf1 = b.[key]
   )
 )
GO
PRINT '第五种语句:'
SELECT distinct a.[id] FROM stress_test AS a,stress_test AS b,stress_test AS c,stress_test AS d,stress_test AS e,stress_test AS f
WHERE a.[key]='Az' AND b.[key]='Bw' AND c.[key]='Cv' AND d.[key]='Du' AND e.[key]='Ex' AND f.[key]='Fy'
     and a.[id] = b.[id] and a.[id] = c.[id] and a.[id] = d.[id] and a.[id] = e.[id] and a.[id] = f.[id]

GO
SET STATISTICS TIME  OFF
SET STATISTICS IO  OFF

GO

posted @ 2007-07-19 17:10  Athrun  阅读(312)  评论(0编辑  收藏  举报