CF1454F Array Partition 题解
题目链接:CF 或者 洛谷
感觉很多人写太复杂了,其实感觉这题性质很好的。。询问是否可以分为三段 \(max_1=min_2=max_3\)。考虑枚举 \(max_1\),由于后缀 \(max_3\) 具有单调性,所以我们可以双指针轻松拿到这样一个模型:
因为后缀 \(max\) 具有单调性,通过双指针我们可以拿到 \(j\) 后缀 \(max\) 恰好等于 \(i\) 前缀 \(max\),\(pre_j\) 后缀 \(max\) 恰好不等于,即大于 \(i\) 前缀 \(max\)。我们为了 \(pre_j\) 的双指针循环终止,可以考虑在 \(0\) 处放一个 \(INF\) 表示无穷大。那么在 \((pre_j,j]\) 任取一个点作为后缀 \(max\) 的起点都是可以满足前后缀 \(max\) 相等,接下来显然中间一段起点为 \(i+1\),终点为后缀起点的前一个位置,不妨设后缀起点假如为 \(t\),则中间一段为 \([i+1,t-1]\)。考虑可以用 ST 表维护查询区间最小值,我们观察到左端点是固定的 \(i+1\),而 \(t \in (pre_j,j]\),又想到区间 \(min\) 具有单调性,那么我们使用二分找右端点是否使得存在这个 \(min\) 就行。当然二分的右端点的下界显然不能小于 \(i+1\),取个 \(max\) 就行。注意到 \(l>r\) 即 \(i+1>j-1\),因为 \(pre_j\) 不可能大于 \(j-1\)。
即为这种情形时,注意下题目问的,这三段是显然不能挨着的:
这个时候直接判 \(NO\) 即可。二分出的 \(ans\) 注意是中间段右端点最后输出三段长即可。
参照代码
#include <bits/stdc++.h>
// #pragma GCC optimize(2)
// #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
// #define isPbdsFile
#ifdef isPbdsFile
#include <bits/extc++.h>
#else
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope>
#endif
using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
template <typename T>
int disc(T* a, int n)
{
return unique(a + 1, a + n + 1) - (a + 1);
}
template <typename T>
T lowBit(T x)
{
return x & -x;
}
template <typename T>
T Rand(T l, T r)
{
static mt19937 Rand(time(nullptr));
uniform_int_distribution<T> dis(l, r);
return dis(Rand);
}
template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
return (a % b + b) % b;
}
template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
a %= c;
T1 ans = 1;
for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
return modt(ans, c);
}
template <typename T>
void read(T& x)
{
x = 0;
T sign = 1;
char ch = getchar();
while (!isdigit(ch))
{
if (ch == '-')sign = -1;
ch = getchar();
}
while (isdigit(ch))
{
x = (x << 3) + (x << 1) + (ch ^ 48);
ch = getchar();
}
x *= sign;
}
template <typename T, typename... U>
void read(T& x, U&... y)
{
read(x);
read(y...);
}
template <typename T>
void write(T x)
{
if (typeid(x) == typeid(char))return;
if (x < 0)x = -x, putchar('-');
if (x > 9)write(x / 10);
putchar(x % 10 ^ 48);
}
template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
write(x), putchar(c);
write(c, y...);
}
template <typename T11, typename T22, typename T33>
struct T3
{
T11 one;
T22 tow;
T33 three;
bool operator<(const T3 other) const
{
if (one == other.one)
{
if (tow == other.tow)return three < other.three;
return tow < other.tow;
}
return one < other.one;
}
T3() { one = tow = three = 0; }
T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
{
}
};
template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
if (x < y)x = y;
}
template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
if (x > y)x = y;
}
constexpr int N = 2e5 + 10;
constexpr int T = 25;
int st[N][T + 1];
int a[N];
int LOG2[N];
int n;
inline void init()
{
const int k = LOG2[n] + 1;
forn(i, 1, n)st[i][0] = a[i];
forn(j, 1, k)
{
forn(i, 1, n-(1<<j)+1)st[i][j] = min(st[i][j - 1], st[i + (1 << j - 1)][j - 1]);
}
}
inline int query(const int l, const int r)
{
const int k = LOG2[r - l + 1];
return min(st[l][k], st[r - (1 << k) + 1][k]);
}
constexpr int INF = 1e9 + 7;
inline void solve()
{
cin >> n;
forn(i, 1, n)cin >> a[i];
init();
int i = 1, j = n, pre_j = n;
int pre = a[1], nxt = a[n], nxtMax = a[n];
while (i < j)
{
while (nxt < pre and j > i)uMax(nxt, a[--j]); //第一个满足
while (nxtMax <= pre and pre_j > 0)uMax(nxtMax, a[--pre_j]); //第一个不满足
if (nxt == pre)
{
int l = max(i + 1, pre_j), r = j - 1;
if (l > r)
{
no << endl;
return;
}
while (l < r)
{
const int mid = l + r + 1 >> 1;
if (query(i + 1, mid) >= pre)l = mid;
else r = mid - 1;
}
if (query(i + 1, r) == pre)
{
yes << endl;
cout << i << " " << r - i << " " << n - r << endl;
return;
}
}
uMax(pre, a[++i]);
}
no << endl;
}
signed int main()
{
// MyFile
Spider
//------------------------------------------------------
// clock_t start = clock();
int test = 1;
// read(test);
cin >> test;
a[0] = INF;
forn(i, 2, N-1)LOG2[i] = LOG2[i >> 1] + 1;
forn(i, 1, test)solve();
// while (cin >> n, n)solve();
// while (cin >> test)solve();
// clock_t end = clock();
// cerr << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;
}
复杂度分析:
三个指针至多各自走 \(n\) 次,所以指针的移动是 \(O(n)\) 的。考虑执行的二分次数,每次 \(i+1\) 作为左端点至多执行一次二分,至多 \(n-1\) 次,预处理 \(ST\) 表是 \(n\log{n}\),单次询问则为 \(O(1)\),最终单个测试总复杂度即为 \(O(n\log{n})\)。