CF1000F One Occurrence题解

题目链接:CF 或者 洛谷

感觉很经典的题,而且给的 \(5e5\),虽然莫队之类的很好想,但完全没必要去考虑这类算法,这种数据范围常数又大又开盲盒。很显然的具有单 \(log\) 的算法。

回忆下经典问题 “HH的项链”。其实对于区间颜色数的方法网上已经总结的很全了,常见的无非就莫队,维护 \(last\) 用 BIT、主席树之类的计数。这题和颜色数没啥太大关系,但分析方式是一致的。

考虑 \([l,r]\) 区间上的若干个数 \(a_i\) 表示,如果有 \(a_i\) 前面与自己相同的 \(a_j\) 满足了 \(j\ge l\),那么很显然这个区间 \(a_i\) 至少出现了两次。考虑下所有数的 \(pre_{min} < l\),这显然是一个大前提。如果最小的 \(pre\) 都不满足,那显然不行的。然后沿用 CF1916E Happy Life in University 题解。我们考虑使用后一个数代替前一个相同数的影响:

显然,前一个数 \(x_1\) 的影响被后一个数 \(x_2\) 代替了,那么 \(x_1\) 不该对 \(x\) 这个值产生任何影响,注意到查询为 \(pre<l\),我们只需要把 \(x_1\) 处的 \(pre\) 设做 \(INF\) 即可。接下来加入这个新的 \(x_2\) 贡献代替原来的贡献,它的 \(pre\) 显然为 \(x_1\)。然后在这个前提下用线段树维护单点覆盖和查询最小的 \(pr\) 以及对应的值即可。查询用扫描线离线下来从左往右依次修改询问回答即可。稍微注意一点就是 \(pre\) 数组初识应该全为 \(INF\) 防止影响 \(<l\) 的最小 \(pre\) 查询。需要注意防止误删,因为我们的删除本质是把上一个 \(pre\) 处的 \(pre\) 值赋值为 \(INF\),如果它前面没有数应该为 \(0\)。这个时候显然线段树如果你写的 \([1,n]\) 的就没办法将 \(0\) 处去设置成 \(INF\)。所以最好的办法还是不用管没有 \(pre\) 的。换句话来讲,保证删除的 \(pre\)\(1 \sim n\) 中即可。

参照代码
#include <bits/stdc++.h>

// #pragma GCC optimize(2)
// #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")

// #define isPbdsFile

#ifdef isPbdsFile

#include <bits/extc++.h>

#else

#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope>

#endif

using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};

template <typename T>
int disc(T* a, int n)
{
    return unique(a + 1, a + n + 1) - (a + 1);
}

template <typename T>
T lowBit(T x)
{
    return x & -x;
}

template <typename T>
T Rand(T l, T r)
{
    static mt19937 Rand(time(nullptr));
    uniform_int_distribution<T> dis(l, r);
    return dis(Rand);
}

template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
    return (a % b + b) % b;
}

template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
    a %= c;
    T1 ans = 1;
    for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
    return modt(ans, c);
}

template <typename T>
void read(T& x)
{
    x = 0;
    T sign = 1;
    char ch = getchar();
    while (!isdigit(ch))
    {
        if (ch == '-')sign = -1;
        ch = getchar();
    }
    while (isdigit(ch))
    {
        x = (x << 3) + (x << 1) + (ch ^ 48);
        ch = getchar();
    }
    x *= sign;
}

template <typename T, typename... U>
void read(T& x, U&... y)
{
    read(x);
    read(y...);
}

template <typename T>
void write(T x)
{
    if (typeid(x) == typeid(char))return;
    if (x < 0)x = -x, putchar('-');
    if (x > 9)write(x / 10);
    putchar(x % 10 ^ 48);
}

template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
    write(x), putchar(c);
    write(c, y...);
}


template <typename T11, typename T22, typename T33>
struct T3
{
    T11 one;
    T22 tow;
    T33 three;

    bool operator<(const T3 other) const
    {
        if (one == other.one)
        {
            if (tow == other.tow)return three < other.three;
            return tow < other.tow;
        }
        return one < other.one;
    }

    T3() { one = tow = three = 0; }

    T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
    {
    }
};

template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
    if (x < y)x = y;
}

template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
    if (x > y)x = y;
}

constexpr int N = 5e5 + 10;
constexpr int INF = 5e5 + 5;
int a[N];

struct Node
{
    int minPre = INF;
    int minVal;
} node[N << 2];

#define minPre(x) node[x].minPre
#define minVal(x) node[x].minVal

inline void push_up(const int curr)
{
    minPre(curr) = min(minPre(ls(curr)),minPre(rs(curr)));
    minVal(curr) = minPre(curr) == minPre(ls(curr)) ? minVal(ls(curr)) : minVal(rs(curr));
}

int n, q;

inline void cover(const int curr, const int pos, const int newPos, const int val, const int l = 1, const int r = n)
{
    const int mid = l + r >> 1;
    if (l == r)
    {
        minPre(curr) = newPos, minVal(curr) = val;
        return;
    }
    if (pos <= mid)cover(ls(curr), pos, newPos, val, l, mid);
    else cover(rs(curr), pos, newPos, val, mid + 1, r);
    push_up(curr);
}

inline void merge(pii& curr, const pii& other)
{
    if (other.first < curr.first)curr = other;
}

inline pii query(const int curr, const int l, const int r, const int s = 1, const int e = n)
{
    if (l <= s and e <= r)return pii(minPre(curr),minVal(curr));
    const int mid = s + e >> 1;
    pii ans(INF, 0);
    if (l <= mid)merge(ans, query(ls(curr), l, r, s, mid));
    if (r > mid)merge(ans, query(rs(curr), l, r, mid + 1, e));
    return ans;
}

vector<pii> seg[N];
int ans[N];
int pre[N];

inline void solve()
{
    cin >> n;
    forn(i, 1, n)cin >> a[i];
    cin >> q;
    forn(i, 1, q)
    {
        int l, r;
        cin >> l >> r;
        seg[r].emplace_back(i, l);
    }
    forn(r, 1, n)
    {
        if (pre[a[r]])cover(1, pre[a[r]], INF, INF);//注意保证pre在[1,n]中
        cover(1, r, pre[a[r]], a[r]);
        pre[a[r]] = r;
        for (const auto [id,l] : seg[r])
        {
            auto [MinPre, val] = query(1, l, r);
            if (MinPre < l)ans[id] = val;
        }
    }
    forn(i, 1, q)cout << ans[i] << endl;
}

signed int main()
{
    // MyFile
    Spider
    //------------------------------------------------------
    // clock_t start = clock();
    int test = 1;
    //    read(test);
    // cin >> test;
    forn(i, 1, test)solve();
    //    while (cin >> n, n)solve();
    //    while (cin >> test)solve();
    // clock_t end = clock();
    // cerr << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;
}

\[时间复杂度为:\ O((n+q)\log{n}) \]

posted @ 2024-01-30 17:07  Athanasy  阅读(19)  评论(0编辑  收藏  举报