CF765F Souvenirs 题解

题目链接:CF 或者 洛谷

想了很久,然后想起做过的一道题:秃子酋长,一开始以为差不多,结果写着写着就发现不对劲了。最后写出了个神仙回滚莫队解法,感觉很妙,记录下。

进入神仙分析时刻

首先,我们来考虑一个事实,加上一个数以后,如果能找到它的前后驱,那么可以立马更新最优解,这个也即是瓶颈点。因为最优的绝对值最小值,一定是排序以后相邻位置的所有数对中选取才是最优的。而回滚莫队提供了一个很好的东西:如果增加和删除是互逆的过程,那么我就可以回滚?so?我们直接只加不减回滚莫队就完了吗?

当然没那么简单,考虑一个事实,你在链表或者一个序列上加上一个数,如何能 \(O(1)\) 找到,显然这玩意没法做到。但我们发现!删除一个原有的数在链表中,可以轻松做到 \(O(1)\)。so?只删不加回滚莫队?问题来了,问的答案是 \(min(abs(a_i-a_j))\) 这玩意是删除一个数对以后没办法维护啊,只有加才可以维护。又陷入死胡同了,此时我想了很多办法甚至想要放弃回滚莫队了。但是想到了一个题:CF763E Timofey and our friends animals。其实到现在为止,我还是没有太多的思路,但这题也给了我后续一些贡献计算的启发。都属于盲人摸象。忽然想了下,只加不减是肯定得要的,因为答案只能这样构造,关键是这个链表,如果我一开始建好,然后从 \(n\) 一路删到当前查询块的右端点,然后重新当做加入,左端点当做删除一段,然后回滚,类似又加又删?我是这么感觉的。这样一来链表的形态解决了!!!

比较激动的开始码,问题来了,删除左端点后贡献该咋算,然后我想了下 \(L\)\(blockR\) 的数量不超过 \(\sqrt{n}\),那我直接枚举左半边的每个链表点的前后缀作为贡献的一部分,另一部分贡献为右边的点加入时候计算。嗯,很快写好了,写了个对拍,wa 了。

检查,发现右端点可能和要删除的左端点有贡献被计算了,嗯,加个判断,写个变量 \(split\) 表示查询块的右端点,\(r\) 节点的前后缀在 \(split\) 右边的才计算答案。至此过了几个对拍以后又 wa 了。噢,看了半小时,发现还得特判当前加入的点是不是右半边的点,因为我回滚的时候也用的是一个函数,右半边的点如果和左半边相连,这也是不行的。

好了,写了半天,又 wa 了,如果同一个块,写一发暴力:\(O(\sqrt{n}\log{\sqrt{n}}+\sqrt{n})\),完全够用。感觉这个 \(\log{\sqrt{n}}\)\(O(1)\) 都行,小的可怜。好了,拍过了一堆,拍一个 \(1e4\) 的试试,wa 了一两个,进入崩溃阶段。拍了十几组小数据,终于找到了一个小 wa 数据可以调的了,debug 了半小时,找到了问题,因为在左端点删除的时候,可能会伴随着原有的两个右端点的数变成相邻的了,这个时候其实也该更新右半部分的答案了。至此,解决了。

在途中,有过那么一瞬间冲动,在最后找到问题时,想要再无脑搞个链表单独维护右半边,想了大半天发现根本做不到一个较优复杂度,没办法无脑。一点也不好 “回滚”。当然肯定有用树类 ds 的更优解,但莫队的魅力就是这样的,看似暴力,其实处处充满着思考,令人喜爱。无论是常用的值域分块平衡修改与查询的复杂度,亦或者二次莫队离线的巧妙计算,都是充满着各种各样的探索与思考。最后拍了几波大数据和暴力对拍,过的时候还是很激动的。至此记录下思考心得。

参照代码
#include <bits/stdc++.h>

// #pragma GCC optimize(2)
// #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")

// #define isPbdsFile

#ifdef isPbdsFile

#include <bits/extc++.h>

#else

#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope>

#endif

using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};

template <typename T>
int disc(T* a, int n)
{
    return unique(a + 1, a + n + 1) - (a + 1);
}

template <typename T>
T lowBit(T x)
{
    return x & -x;
}

template <typename T>
T Rand(T l, T r)
{
    static mt19937 Rand(time(nullptr));
    uniform_int_distribution<T> dis(l, r);
    return dis(Rand);
}

template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
    return (a % b + b) % b;
}

template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
    a %= c;
    T1 ans = 1;
    for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
    return modt(ans, c);
}

template <typename T>
void read(T& x)
{
    x = 0;
    T sign = 1;
    char ch = getchar();
    while (!isdigit(ch))
    {
        if (ch == '-')sign = -1;
        ch = getchar();
    }
    while (isdigit(ch))
    {
        x = (x << 3) + (x << 1) + (ch ^ 48);
        ch = getchar();
    }
    x *= sign;
}

template <typename T, typename... U>
void read(T& x, U&... y)
{
    read(x);
    read(y...);
}

template <typename T>
void write(T x)
{
    if (typeid(x) == typeid(char))return;
    if (x < 0)x = -x, putchar('-');
    if (x > 9)write(x / 10);
    putchar(x % 10 ^ 48);
}

template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
    write(x), putchar(c);
    write(c, y...);
}


template <typename T11, typename T22, typename T33>
struct T3
{
    T11 one;
    T22 tow;
    T33 three;

    bool operator<(const T3 other) const
    {
        if (one == other.one)
        {
            if (tow == other.tow)return three < other.three;
            return tow < other.tow;
        }
        return one < other.one;
    }

    T3() { one = tow = three = 0; }

    T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
    {
    }
};

template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
    if (x < y)x = y;
}

template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
    if (x > y)x = y;
}

constexpr int N = 3e5 + 10;
int pre[N], nxt[N]; //链表前后
int pos[N]; //序列分块

struct Mo
{
    int l, r, id;

    bool operator<(const Mo& other) const
    {
        return pos[l] ^ pos[other.l] ? l < other.l : r < other.r;
    }
} node[N];

constexpr int INF = 1e9 + 7;
int curr = INF;
pii a[N];
int val[N], idx[N], mp[N]; //排序以后的值、每个点对应排序后的编号、每个排序后的编号对应的原下标
int split; //分割点
//删除
inline void del(const int id)
{
    const int prePos = pre[id];
    const int nxtPos = nxt[id];
    nxt[prePos] = nxtPos;
    pre[nxtPos] = prePos;
    if (mp[nxtPos] > split and mp[prePos] > split) uMin(curr, val[nxtPos] - val[prePos]);
}

//增加,只考虑分割点右侧不需要回滚的贡献
inline void add(const int id)
{
    const int prePos = pre[id];
    const int nxtPos = nxt[id];
    pre[nxtPos] = id;
    nxt[prePos] = id;
    if (mp[id] <= split)return;
    if (mp[prePos] > split)uMin(curr, val[id] - val[prePos]);
    if (mp[nxtPos] > split)uMin(curr, val[nxtPos] - val[id]);
}

int n, q;
int ans[N];
int siz;
int tmpVal[N], tmpCnt;
int old[N];
//计数
inline int cale(const int id)
{
    const int prePos = pre[id];
    const int nxtPos = nxt[id];
    int res = INF;
    if (nxtPos)uMin(res, val[nxtPos] - val[id]);
    if (prePos)uMin(res, val[id] - val[prePos]);
    return res;
}

inline void solve()
{
    cin >> n;
    siz = sqrt(n);
    forn(i, 1, n)cin >> a[i].first, old[i] = a[i].first, a[i].second = i, pos[i] = (i - 1) / siz + 1;
    sortArr(a, n);
    forn(i, 1, n)idx[a[i].second] = i, mp[i] = a[i].second, val[i] = a[i].first;
    cin >> q;
    forn(i, 1, q)
    {
        auto& [l,r,id] = node[i];
        cin >> l >> r, id = i;
    }
    sortArr(node, q);
    int l = 1, r = n, last = 0;
    forn(i, 1, n)pre[i] = i - 1, nxt[i] = i + 1;
    nxt[n] = 0;
    forn(i, 1, q)
    {
        auto [L,R,id] = node[i];
        if (pos[L] == pos[R])
        {
            tmpCnt = 0;
            forn(i, L, R)tmpVal[++tmpCnt] = old[i];
            sortArr(tmpVal, tmpCnt);
            int res = INF;
            forn(i, 1, tmpCnt-1)uMin(res, tmpVal[i + 1] - tmpVal[i]);
            ans[id] = res;
            continue;
        }
        if (pos[L] != last)
        {
            const int start = (pos[L] - 1) * siz + 1;
            const int end = min(pos[L] * siz, n);
            //回滚莫维护链表形状的精髓之章,建议反复体会回滚莫的互逆核心
            while (r < n)add(idx[++r]);
            while (l < start)del(idx[l++]);
            while (r > end)del(idx[r--]);
            curr = INF;
            last = pos[L];
            split = end;
        }
        while (r < R)add(idx[++r]);
        //需要回滚
        int tmpL = l, preCurr = curr;
        while (tmpL < L)del(idx[tmpL++]);
        int res = curr;
        forn(i, L, split)uMin(res, cale(idx[i])); //暴力再统计左半部分对全局的情况
        ans[id] = res;
        while (tmpL > l)add(idx[--tmpL]); //回滚
        curr = preCurr;
    }
    forn(i, 1, q)cout << ans[i] << endl;
}

signed int main()
{
    // MyFile
    Spider
    //------------------------------------------------------
    // clock_t start = clock();
    int test = 1;
    //    read(test);
    // cin >> test;
    forn(i, 1, test)solve();
    //    while (cin >> n, n)solve();
    //    while (cin >> test)solve();
    // clock_t end = clock();
    // cerr << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;
}

\[ 时间复杂度最坏为:\ O(q\sqrt{n}\log{\sqrt{n})} \]

posted @ 2024-01-27 23:27  Athanasy  阅读(68)  评论(3编辑  收藏  举报