CF911G Mass Change Queries 题解
题目链接:CF 或者 洛谷
前置知识点:平衡树合并: CF文章 与维基百科
看上去这题有很多人用线段树分裂与合并去做,其实这种需要分裂和合并的,我们用文艺平衡树去维护区间信息是最容易写的。
考虑本题的特殊性,值域并不是很大,所以其实我们可以为每种值开一棵文艺平衡树,而平衡树维护的值为下标序列,即对应的某个值的所有下标组成了一棵平衡树。而将某个范围内的值覆盖成另一个值,我们可以利用 FHQ 的分裂,传统性的拿到 \(root[x]\ 的\ [l,r]\) 上的平衡树,然后合并到 \(root[y]\) 对应的平衡树即可。
类似这题:梦幻布丁,我们也可以考虑启发式合并平衡树去做。不过更重要的是跟这题差不多的分析思想,考虑最坏的情况,就是 \([1,n]\) 上反复做操作,对 \([l,r]\) 上反复做操作也同理分析。很显然,每次操作要么不影响 \([l,r]\) 的颜色情况,要么减少一种颜色情况。不变的要么不存在这种颜色,要么这种颜色变成了另一种也不存在的颜色,这两种情况都是 \(O(1)\) 的。考虑后者情况,很显然,它变成了梦幻布丁那题,同样的分析技巧容易知道,总操作上限复杂度不会超过:\(n\log{n}\) 的,因为每次如果每次至少减少一种颜色,那么也最多减少了 \(99\) 次,而它们的树节点总个数和为 \(n\) 个节点。
最后,当然由于每个节点的值为下标标号,其实可以直接用节点下标表示,比如 \(node[1]\) 既表示 \(1\) 号 \(FHQ\) 节点,也表示值,但为了可读性,还是采用传统的增加一个 \(val\) 属性表示对应下标。最后就是 \(dfs\) 所有树了,很显然,总节点个数不超过 \(n\) 个,这个复杂度其实是 \(O(n)\) 的。
参照代码
#include <bits/stdc++.h>
// #pragma GCC optimize("Ofast,unroll-loops")
// #pragma GCC optimize(2)
// #define isPbdsFile
#ifdef isPbdsFile
#include <bits/extc++.h>
#else
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope>
#endif
using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
template <typename T>
int disc(T* a, int n)
{
return unique(a + 1, a + n + 1) - (a + 1);
}
template <typename T>
T lowBit(T x)
{
return x & -x;
}
template <typename T>
T Rand(T l, T r)
{
static mt19937 Rand(time(nullptr));
uniform_int_distribution<T> dis(l, r);
return dis(Rand);
}
template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
return (a % b + b) % b;
}
template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
a %= c;
T1 ans = 1;
for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
return modt(ans, c);
}
template <typename T>
void read(T& x)
{
x = 0;
T sign = 1;
char ch = getchar();
while (!isdigit(ch))
{
if (ch == '-')sign = -1;
ch = getchar();
}
while (isdigit(ch))
{
x = (x << 3) + (x << 1) + (ch ^ 48);
ch = getchar();
}
x *= sign;
}
template <typename T, typename... U>
void read(T& x, U&... y)
{
read(x);
read(y...);
}
template <typename T>
void write(T x)
{
if (typeid(x) == typeid(char))return;
if (x < 0)x = -x, putchar('-');
if (x > 9)write(x / 10);
putchar(x % 10 ^ 48);
}
template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
write(x), putchar(c);
write(c, y...);
}
template <typename T11, typename T22, typename T33>
struct T3
{
T11 one;
T22 tow;
T33 three;
bool operator<(const T3 other) const
{
if (one == other.one)
{
if (tow == other.tow)return three < other.three;
return tow < other.tow;
}
return one < other.one;
}
T3() { one = tow = three = 0; }
T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
{
}
};
template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
if (x < y)x = y;
}
template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
if (x > y)x = y;
}
constexpr int N = 2e5 + 10;
constexpr int MX = 110;
struct FHQ
{
int val, rnk, child[2];
FHQ() = default;
explicit FHQ(const int val)
: val(val)
{
rnk = Rand(INT_MIN,INT_MAX);
child[0] = child[1] = 0;
}
} node[N];
#define rnk(x) node[x].rnk
#define val(x) node[x].val
#define left(x) node[x].child[0]
#define right(x) node[x].child[1]
int root[MX];
int cnt;
inline void split(const int curr, const int val, int& x, int& y)
{
if (!curr)
{
x = y = 0;
return;
}
if (val(curr) <= val)x = curr, split(right(curr), val,right(curr), y);
else y = curr, split(left(curr), val, x,left(curr));
}
//合并左右两棵子树
inline int merge(const int x, const int y)
{
if (!x or !y)return x ^ y;
if (rnk(x) < rnk(y))
{
right(x) = merge(right(x), y);
return x;
}
left(y) = merge(x,left(y));
return y;
}
//从左到右合并三棵子树
inline int merge(const int l, const int mid, const int r)
{
return merge(merge(l, mid), r);
}
//增加一个节点
inline void add(int& curr, const int val)
{
int l = 0, r = 0;
split(curr, val, l, r);
node[++cnt] = FHQ(val);
curr = merge(l, cnt, r);
}
//合并两棵平衡树
inline int mergeTree(int x, int y)
{
if (!x or !y)return x ^ y;
if (rnk(x) < rnk(y))swap(x, y);
int leftTree, rightTree;
split(y,val(x), leftTree, rightTree);
left(x) = mergeTree(left(x), leftTree);
right(x) = mergeTree(right(x), rightTree);
return x;
}
int a[N];
int n, q;
int ans[N];
//dfs平衡树,如果有值就赋值
inline void dfs(const int curr, const int val)
{
if (!curr)return;
ans[val(curr)] = val;
dfs(left(curr), val), dfs(right(curr), val);
}
inline void solve()
{
cin >> n;
forn(i, 1, n)cin >> a[i], add(root[a[i]], i);
cin >> q;
forn(i, 1, q)
{
int l, r, x, y;
cin >> l >> r >> x >> y;
int leftTree, rightTree, leftSon, rightSon; //[1,r]、[r+1,n]、[1,l-1]、[l,r]
split(root[x], r, leftTree, rightTree);
split(leftTree, l - 1, leftSon, rightSon);
root[x] = mergeTree(leftSon, rightTree); //去掉[l,r]以后的平衡树合并
root[y] = mergeTree(root[y], rightSon); //合并值y所在平衡树与[l,r]所在平衡树
}
forn(i, 1, 100)dfs(root[i], i);
forn(i, 1, n)cout << ans[i] << ' ';
}
signed int main()
{
// MyFile
Spider
//------------------------------------------------------
// clock_t start = clock();
int test = 1;
// read(test);
// cin >> test;
forn(i, 1, test)solve();
// while (cin >> n, n)solve();
// while (cin >> test)solve();
// clock_t end = clock();
// cerr << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;
}
\[时间复杂度为:\ O((n+q)\log{n})
\]