插头 dp

插头dp

洛谷 黑题板子?
P5056
给出n×m的方格,有些格子不能铺线,其它格子必须铺,形成一个闭合回路。问有多少种铺法?

1、轮廓线
简单地说,轮廓线就是已决策格子和未决策格子的分界线;

2,插头dp以每一个格子进行一次转移;

3,一般设 dp[i][j][state]为(i,j)位置,状态为state的方案数(或者代价,等等让你求的东西……)
所以我们状压什么呢?轮廓线。
DP求解棋盘问题是逐格转移的。所以已经转移过的格子和没转移过的格子被一个折线分成了两半儿。这个折线就是轮廓线。

注意轮廓线状态来确定用几进制数表示,例如这道题有三种状态可以用三进制表示,但是太麻烦 蒟蒻不会
可以用四进制,因为我们一般用的都是二进制的运算,我们可以用两个二进制数表示一个四进制数;
可以用哈希表存储状态,

4,一般的,对于dp数组,我们可以滚动

一些细节代码里看,由于我还没写,先用学长的;

// luogu-judger-enable-o2
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define int ll
#define maxn 100010
#define mod 1926223
using namespace std;
inline int read()
{ 
	int x = 0 , f = 1 ; char ch = getchar() ; 
	while(!isdigit(ch)) { if(ch == '-') f = -1 ; ch = getchar() ; }
	while(isdigit(ch)) x = (x << 3) + (x << 1) + ch - '0' , ch = getchar() ; 
	return x * f ;
}
int n , m , hash[mod + 1] , dp[2][mod + 1] , vis[2][mod + 1] , cnt[2] ;
int now , mp[22][22] , endx , endy , ans ;
char opt[22] ;  
inline void insert(int x , int k)
{
	int tmp = x % mod ; 
	while(hash[tmp])
	{
		if(vis[now][hash[tmp]] == x) {
			dp[now][hash[tmp]] += k ; return ;
		}
		tmp = (tmp + 1) % mod ;
//		cout << "!" << endl ;
	}
	hash[tmp] = ++cnt[now] ; vis[now][cnt[now]] = x ; dp[now][cnt[now]] = k ;
}
inline void work()
{
	dp[0][1] = 1 ; cnt[0] = 1 ; vis[0][1] = 0 ;
	for(int i = 1 ; i <= n ; ++i)
	{
		for(int j = 1 ; j <= m ; ++j)
		{
			cnt[now ^= 1] = 0 ; 
			memset(hash , 0 , sizeof hash) ;
			for(int k = 1 ; k <= cnt[now ^ 1] ; ++k)
			{
				int S = vis[now ^ 1][k] , L = (S >> ((j - 1) * 2)) & 3 , R = (S >> (j << 1)) & 3 ;//注意这个就是取出捆绑的两个二进制数;
				int val = dp[now ^ 1][k] ;
				if(!mp[i][j]) {
//					if(!L && !R)
					 insert(S , val) ;
					continue ;
				}
				if(!L && !R)
				{
					if(mp[i+1][j] && mp[i][j+1]) insert(S ^ (1 << ((j - 1) << 1)) ^ (2 << (j << 1)) , val) ;
				}
				if(!L && R)
				{
					if(mp[i][j+1]) insert(S , val) ; 
					if(mp[i+1][j]) insert(S ^ (R << (j << 1)) ^ (R << ((j - 1) << 1)) , val) ;
				}
				if(L && !R)
				{
					if(mp[i+1][j]) insert(S , val) ; 
					if(mp[i][j+1]) insert(S ^ (L << ((j - 1) << 1)) ^ (L << (j << 1)) , val) ;
				}
				if(L == 1 && R == 1)
				{
					int du = 0 ; 
					for(int p = j + 1 ; ; ++p)
					{
						int state = (S >> ((p - 1) << 1)) & 3 ; 
						if(state == 1) du ++ ; 
						if(state == 2) du -- ; 
						if(du == 0) {
							int dou = S ^ (1 << ((j - 1) << 1)) ^ (1 << (j << 1)) ;  
							insert(dou ^ (2 << ((p - 1) << 1)) ^ (1 << ((p - 1) << 1)) , val) ; 
							break ;
						}
					}
				}
				if(L == 2 && R == 2)
				{#nvluf ec j  
					int du = 0 ; 
					for(int p = j ; ; --p)
					{
						int state = (S >> ((p - 1) << 1)) & 3 ; 
						if(state == 1) du ++ ; 
						if(state == 2) du -- ; 
						if(du == 0) {
							int dou = S ^ (2 << ((j - 1) << 1)) ^ (2 << (j << 1)) ;  
							insert(dou ^ (1 << ((p - 1) << 1)) ^ (2 << ((p - 1) << 1)) , val) ; 
							break ;
						}
					}
				}
				if(L == 2 && R == 1)
					insert(S ^ (2 << ((j - 1) << 1)) ^ (1 << (j << 1)) , val);
				if(L == 1 && R == 2 && i == endx && j == endy)
					ans += val ;
			}
		}
		for(int j = 1 ; j <= cnt[now] ; ++j) vis[now][j] <<= 2 ;
	}
	printf("%lld\n" , ans) ;
}
signed main()
{
	n = read() , m = read() ; 
	for(int i = 1 ; i <= n ; ++i) { 
		scanf("%s" , opt + 1) ; 
		for(int j = 1 ; j <= m ; ++j)
			if(opt[j] == '.')
				mp[i][j] = 1 , endx = i , endy = j ;
	}
	work() ; 
}
posted @ 2020-09-04 21:38  Aswert  阅读(116)  评论(0编辑  收藏  举报