pandas处理各类表格数据
经常遇到Python读取excel和csv还有其他各种文件的内容。json还有web端的读取还是比较简单,但是excel和csv的读写是很麻烦。这里记录了
pandas
库提供的方法来实现文本内容和DataFrame
的转化。
一、读取文本格式数据
首先来看一下针对不同格式的文件的读取函数:
总结一下常见参数:(例子见下面代码)
参数 | 作用
- | -
sep | 指定分隔符,可以是正则表达式
header | 设置为None时处理没有header的文件
names | 指定列
index_col | 将列做成索引,可传入列表,可体现层次
skiprows | 跳过注释行
na_values | 接收表示缺失值的列表或字典
import pandas as pd
import numpy as np
import sys
import pymysql
df = pd.read_csv('ex1.csv')
print(df)
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
df = pd.read_table('ex1.csv',sep=',') #可以使用read_table,但必须指定分隔符
# sep还可以是正则表达式
print(df)
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
df = pd.read_csv('ex2.csv',header = None)#不是每一个csv都有header
print(df)
0 1 2 3 4
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
df = pd.read_csv('ex2.csv',names=['a','b','c','d','names'])#指定名字
print(df)
a b c d names
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
names=['a','b','c','d','names']
df = pd.read_csv('ex2.csv',names=names,index_col='names') #将names做成索引
print(df)
#names对应三个,abcd分别有对应的
a b c d
names
hello 1 2 3 4
world 5 6 7 8
foo 9 10 11 12
df = pd.read_csv('csv_mindex.csv')
print('原始样子:','\n',df)
df = pd.read_csv('csv_mindex.csv',index_col=['keys','key2'])
#层次化索引.
#请注意keys和key2的顺序
print(df)
原始样子:
keys key2 value1 value2
0 one a 1 2
1 one b 3 4
2 two a 9 10
3 two c 13 14
value1 value2
keys key2
one a 1 2
b 3 4
two a 9 10
c 13 14
df = pd.read_csv('ex4.csv')
print('原始样子:','\n',df)
#跳过文件的第几行
print()
df = pd.read_csv('ex4.csv',skiprows=[0,2])
print(df)
原始样子:
# hey!
a b c d message
# just wanted to make things more difficult NaN NaN NaN NaN
1 2 NaN 4 hello
a b c d message
0 1 2 NaN 4 hello
pd.isnull(df)# 处理缺失值
df = pd.read_csv('ex4.csv',skiprows=[0,2],na_values=['hello'])# 接收一组用于表示缺失值的字符串
print(df)
print(pd.isnull(df))
a b c d message
0 1 2 NaN 4 NaN
a b c d message
0 False False True False True
sentinels = {'message':['foo','NA'],'d':['a','NaN']}# 用一个字典为各列指定不同的NA标记值
df = pd.read_csv('ex4.csv',skiprows=[0,2],na_values=sentinels)
print(df)
a b c d message
0 1 2 NaN 4 hello
这里,给出了更详细的参数情况:
二、逐块读取文本文件
这里还是参数的调整问题。由于参数过少,这里不做统一整理。
# nrows参数指定只读取定行。算上第一行哦
pd.read_csv('ex1.csv',nrows=4)
a | b | c | d | message | |
---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | hello |
1 | 5 | 6 | 7 | 8 | world |
2 | 9 | 10 | 11 | 12 | foo |
# chunksize 指定分块读取
chunks = pd.read_csv('ex1.csv',chunksize=2)
print(chunks)
<pandas.io.parsers.TextFileReader object at 0x0000007D7E4A39B0>
for chunk in chunks:
print(chunk)
print('='*10,)
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
==========
a b c d message
2 9 10 11 12 foo
==========
三、将数据写出到文本格式
data = pd.read_csv('ex1.csv',nrows=3)
data.to_csv('ex1_1.csv') #to_csv写入
data.to_csv('ex1_2.csv',sep='|')# 别的分隔符
data.to_csv('ex1_1.csv',na_rep='NULL')# 缺失值会被替换为na_rep
data.to_csv(sys.stdout,index=False,header=False)
# 行、列标签被禁止
# 输出到控制台
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo
data.to_csv(sys.stdout,index=False,columns=['a','b'])
a,b
1,2
5,6
9,10
data.to_csv(sys.stdout)
,a,b,c,d,message
0,1,2,3,4,hello
1,5,6,7,8,world
2,9,10,11,12,foo
四、DataFrame和数据库
# 可以将json格式的数据传给DataFreame
# 也可以数据将数据库的rows传给DataFrame
conn = pymysql.Connect(host='172.31.238.166',port=3306,user='luowang',passwd='root',\
charset='UTF8',db='dyx')
cursor=conn.cursor()
sql='select * from access_log';
cursor.execute(sql)
rows= cursor.fetchall()
print(cursor.description)
(('aid', 3, None, 16, 16, 0, False), ('site_id', 3, None, 16, 16, 0, False), ('count', 3, None, 32, 32, 0, False))
# cursor.description第一个保存了列的信息
# pd.DataFrame(rows,columns=[i[0] for i in cursor.description])
pd.DataFrame(list(rows),columns=[i[0] for i in cursor.description]) #rows必须是list类型
aid | site_id | count | |
---|---|---|---|
0 | 1 | 1 | 45 |
1 | 2 | 3 | 100 |
2 | 3 | 1 | 230 |
3 | 4 | 2 | 10 |
4 | 5 | 5 | 205 |
5 | 6 | 4 | 13 |
6 | 7 | 3 | 220 |
7 | 8 | 5 | 545 |
8 | 9 | 3 | 201 |
9 | 10 | 10 | 10 |
10 | 11 | 11 | 11 |
欢迎进一步交流本博文相关内容:
博客园地址 : http://www.cnblogs.com/AsuraDong/
CSDN地址 : http://blog.csdn.net/asuradong
也可以致信进行交流 : xiaochiyijiu@163.com
欢迎关注个人微博:http://weibo.com/AsuraDong
欢迎转载 , 但请指明出处 : )