【2018ACM/ICPC网络赛】焦作赛区

A  Magic Mirror

题目链接:https://nanti.jisuanke.com/t/31710

 

题意:输入字符串,如果是“Jessy”就输出“Good Guy!",否则输出“Dare you say that again?”。Jessy的大小写不敏感。

 

题解:题意即题解。坑点就是大小写不敏感。

 

代码:

 1 #include<iostream>
 2 #include<string>
 3 #include <algorithm>  
 4 
 5 using namespace std;
 6 int main(){
 7     int T;
 8     cin>>T;
 9     while(T--){
10         string s;
11         cin>>s;
12         transform(s.begin(), s.end(), s.begin(), ::toupper);  
13         if(s == "JESSIE"){
14             cout<<"Good guy!"<<endl;
15         }
16         else{
17             cout<<"Dare you say that again?"<<endl;
18         }
19 
20     }
21     return 0;
22 }
View Code

 


 

I  Save the Room

题目链接:https://nanti.jisuanke.com/t/31718

 

题意:给你A*B*C的长宽高的立方体,让你用1*1*2的方块填满,问可不可以。

 

题解:结论。。只要有一边是偶数就行。。

 

代码:

 

 1 #include <iostream>
 2 using namespace std;
 3 
 4 int a, b, c;
 5 int main(){
 6     while(cin>>a>>b>>c){
 7         int ans = a * b * c;
 8         if(ans & 1)
 9             cout<<"No"<<endl;
10         else
11             cout<<"Yes"<<endl;
12     }
13     return 0;
14 }
View Code

 

 


 

G  Give Candies

题目链接:https://nanti.jisuanke.com/t/31716

 

题意:N个糖果给N个孩子,问有多少分法。

 

题解:先开始和队友讨论一发以为是整数划分。。太天真了。。推了几个发现公式显而易见2^(n-1)。由于数字太大,要用到

费马小定理:

  p是质数,且gcd(a,p)=1,那么 $ a^{p-1} \equiv 1 (mod p)$

 

代码:

 

 1 #include<stdio.h>
 2 #include<string.h>
 3 #include<stdlib.h>
 4 #include<algorithm>
 5 #include<iostream>
 6 #include<queue>
 7 #include<map>
 8 #include<stack>
 9 #include<set>
10 #include<cmath>
11 using namespace std;
12 typedef long long ll;
13 const int maxn = 100015;
14 const ll mod = 1000000000+7;
15 
16 ll qpow( ll a,ll n,ll mod ){
17     ll res = 1;
18     while( n>=1 ){
19         if( n&1 ){
20             res = res*a%mod;
21         }
22         a = a*a%mod;
23         n >>= 1;
24     }
25     return res%mod;
26 }
27 
28 ll GetNum( char str[],ll mod ){
29     ll res = 0;
30     int len = strlen( str );
31     for( int i=0;i<len;i++ ){
32         res = (res*10+str[i]-'0')%mod;
33     }
34     return res;
35 }
36 
37 int main(){
38     char str[ maxn];
39     int T;
40     cin>>T;
41     while( T--){
42         scanf("%s",str);
43         ll n = GetNum( str,mod-1 );
44         printf("%lld\n",qpow( 2,(n-1+mod)%mod,mod ));
45     }
46     return 0;
47 }
View Code

 

 


 

H  String and Times

题目链接:https://nanti.jisuanke.com/t/31717

 

题意:给你一个字符串,让你求子串出现次数在[A,B]的有多少个。

 

题解:啊。板子题,SAM,SA都可以。。我直接找的板子,改了两行过的。。就当存个板子吧。

相似例题:Hust1352,Hdu6194,POJ3261.

 

代码:

 

  1 #include <cstdio>
  2 #include <iostream>
  3 #include <algorithm>
  4 #include <vector>
  5 #include <set>
  6 #include <map>
  7 #include <string>
  8 #include <cstring>
  9 #include <stack>
 10 #include <queue>
 11 #include <cmath>
 12 using namespace std;
 13 #define rank rankk
 14 #define ll long long
 15 
 16 const int MAXN=100005;
 17 int t1[MAXN],t2[MAXN],c[MAXN];
 18 
 19 bool cmp(int *r,int a,int b,int l){
 20     return r[a] == r[b] && r[a+l] == r[b+l];
 21 }
 22 
 23 void da(int str[],int sa[],int rank[],int height[],int n,int m){
 24     str[n++]=0;
 25     int i, j, p, *x = t1, *y = t2;
 26 
 27     for(i = 0;i < m;i++)c[i] = 0;
 28     for(i = 0;i < n;i++)c[x[i] = str[i]]++;
 29     for(i = 1;i < m;i++)c[i] += c[i-1];
 30     for(i = n-1;i >= 0;i--)sa[--c[x[i]]] = i;
 31     for(j = 1;j <= n; j <<= 1)
 32     {
 33         p = 0;
 34 
 35         for(i = n-j; i < n; i++)y[p++] = i;
 36         for(i = 0; i < n; i++)if(sa[i] >= j)y[p++] = sa[i] - j;
 37 
 38         for(i = 0; i < m; i++)c[i] = 0;
 39         for(i = 0; i < n; i++)c[x[y[i]]]++;
 40         for(i = 1; i < m;i++)c[i] += c[i-1];
 41         for(i = n-1; i >= 0;i--)sa[--c[x[y[i]]]] = y[i];
 42         swap(x,y);
 43 
 44         p = 1; x[sa[0]] = 0;
 45         for(i = 1;i < n;i++)
 46             x[sa[i]] = cmp(y,sa[i-1],sa[i],j)?p-1:p++;
 47         if(p >= n)break;
 48         m = p;
 49     }
 50     int k = 0; n--;
 51     for(i = 0;i <= n;i++)rank[sa[i]] = i;
 52     for(i = 0;i < n;i++)
 53     {
 54         if(k)k--;
 55         j = sa[rank[i]-1]; while(str[i+k] == str[j+k])k++; height[rank[i]] = k;
 56     }
 57 }
 58 int rank[MAXN],height[MAXN];
 59 int RMQ[MAXN];
 60 int mm[MAXN];
 61 int best[20][MAXN];
 62 void initRMQ(int n)
 63 {
 64     mm[0]=-1;
 65     for(int i=1;i<=n;i++)
 66     mm[i]=((i&(i-1))==0)?mm[i-1]+1:mm[i-1];
 67     for(int i=1;i<=n;i++)best[0][i]=i;
 68     for(int i=1;i<=mm[n];i++)
 69     for(int j=1;j+(1<<i)-1<=n;j++)
 70     {
 71         int a=best[i-1][j];
 72         int b=best[i-1][j+(1<<(i-1))];
 73         if(RMQ[a]<RMQ[b])best[i][j]=a; else best[i][j]=b;
 74     }
 75 }
 76 int askRMQ(int a,int b)
 77 {
 78     int t; t=mm[b-a+1];
 79     b-=(1<<t)-1;
 80     a=best[t][a];b=best[t][b];
 81     return RMQ[a]<RMQ[b]?a:b;
 82 }
 83 int lcp(int a,int b)
 84 {
 85     a=rank[a];b=rank[b];
 86     if(a>b)swap(a,b);
 87     return height[askRMQ(a+1,b)];
 88 }
 89 int t,k,len;
 90 char sts[MAXN];
 91 int st[MAXN],sa[MAXN];
 92 multiset<int>s;
 93 ll cal(int x)
 94 {
 95     ll an=0;
 96     if(x==1)
 97     {
 98         an=1LL*len*(len+1LL)/2LL;
 99         for(int i=1;i<=len;i++)an-=height[i];
100     }
101     else
102     {
103         s.clear();
104         for(int i=1;i<=x-1;i++)s.insert(height[i]);
105         for(int i=x;i<=len;i++)
106         {
107             int pre=*s.begin();s.erase(s.find(height[i-x+1]));s.insert(height[i]);
108             //printf("%d %d!\n",pre,*s.begin());
109             an+=max(0,*s.begin()-pre);
110         }
111     }
112     return an;
113 }
114 int main(){
115     scanf("%d",&t);
116     while(~scanf("%s",sts)){
117       int l,r;
118         scanf("%d%d",&l,&r);
119         len=strlen(sts);
120         memset(height,0,sizeof(height));
121         for(int i=0;i<len;i++)
122           st[i]=sts[i]-'A'+1;
123         da(st,sa,rank,height,len,27);
124        /* for(int i=1;i<=len;i++)
125             printf("%d\n",height[i]);*/
126         printf("%lld\n",cal(l)-cal(r+1));
127         
128     }
129     return 0;
130 }
View Code

 

 


 

L  Poor God Water

题目链接:https://nanti.jisuanke.com/t/31721

 

题意:三种食物的顺序不同可能会中毒。每小时从肉,鱼,巧克力吃一种。

1、如果连续三小时,只吃一样会不开心。

2、如果连续三小时,每种都吃了,而且中间吃的巧克力,就会中毒。

3、如果连续三小时,中间他吃了肉或者鱼,然后另外两个小时吃了巧克力,他也会中毒。

现在求N小时内能让他开心并且不中毒的可能的组合种数。

 

题解:矩阵快速幂。emmm...交了7发都没过。。。赛后群里就说BM。。QAQ我敲。。黑科技。。

暴力推出前8项以上,然后丢进去自动求。当时没补题csp就GG。呵呵哒。

 

代码:

  1 #include <cstdio>
  2 #include <cstring>
  3 #include <cmath>
  4 #include <algorithm>
  5 #include <vector>
  6 #include <string>
  7 #include <map>
  8 #include <set>
  9 #include <cassert>
 10 using namespace std;
 11 #define rep(i,a,n) for (int i=a;i<n;i++)
 12 #define per(i,a,n) for (int i=n-1;i>=a;i--)
 13 #define pb push_back
 14 #define mp make_pair
 15 #define all(x) (x).begin(),(x).end()
 16 #define fi first
 17 #define se second
 18 #define SZ(x) ((int)(x).size())
 19 typedef vector<int> VI;
 20 typedef long long ll;
 21 typedef pair<int, int> PII;
 22 const ll mod = 1000000007;
 23 ll powmod(ll a, ll b)
 24 {
 25     ll res = 1; a %= mod;
 26     assert(b >= 0); 
 27     for (; b; b >>= 1)
 28     {
 29         if (b & 1)
 30             res = res * a%mod;
 31         a = a * a%mod;
 32     }
 33     return res;
 34 }
 35 // head
 36 
 37 int _, n;
 38 namespace linear_seq 
 39 {
 40     const int N = 10010;
 41     ll res[N], base[N], _c[N], _md[N];
 42     vector<int> Md;
 43     void mul(ll *a, ll *b, int k) 
 44     {
 45         rep(i, 0, k + k) _c[i] = 0;
 46         rep(i, 0, k) 
 47             if (a[i]) 
 48                 rep(j, 0, k) 
 49                     _c[i + j] = (_c[i + j] + a[i] * b[j]) % mod;
 50         for (int i = k + k - 1; i >= k; i--) 
 51             if (_c[i])
 52                 rep(j, 0, SZ(Md)) 
 53                     _c[i - k + Md[j]] = (_c[i - k + Md[j]] - _c[i] * _md[Md[j]]) % mod;
 54         rep(i, 0, k) a[i] = _c[i];
 55     }
 56     int solve(ll n, VI a, VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
 57 //        printf("%d\n",SZ(b));
 58         ll ans = 0, pnt = 0;
 59         int k = SZ(a);
 60         assert(SZ(a) == SZ(b));
 61         rep(i, 0, k) 
 62             _md[k - 1 - i] = -a[i]; _md[k] = 1;
 63         Md.clear();
 64         rep(i, 0, k) 
 65             if (_md[i] != 0) Md.push_back(i);
 66         rep(i, 0, k) 
 67             res[i] = base[i] = 0;
 68         res[0] = 1;
 69         while ((1ll << pnt) <= n) pnt++;
 70         for (int p = pnt; p >= 0; p--) 
 71         {
 72             mul(res, res, k);
 73             if ((n >> p) & 1) 
 74             {
 75                 for (int i = k - 1; i >= 0; i--) res[i + 1] = res[i]; res[0] = 0;
 76                 rep(j, 0, SZ(Md)) res[Md[j]] = (res[Md[j]] - res[k] * _md[Md[j]]) % mod;
 77             }
 78         }
 79         rep(i, 0, k) ans = (ans + res[i] * b[i]) % mod;
 80         if (ans < 0) ans += mod;
 81         return ans;
 82     }
 83     VI BM(VI s) 
 84     {
 85         VI C(1, 1), B(1, 1);
 86         int L = 0, m = 1, b = 1;
 87         rep(n, 0, SZ(s)) 
 88         {
 89             ll d = 0;
 90             rep(i, 0, L + 1) d = (d + (ll)C[i] * s[n - i]) % mod;
 91             if (d == 0) ++m;
 92             else if (2 * L <= n) 
 93             {
 94                 VI T = C;
 95                 ll c = mod - d * powmod(b, mod - 2) % mod;
 96                 while (SZ(C) < SZ(B) + m) C.pb(0);
 97                 rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod;
 98                 L = n + 1 - L; B = T; b = d; m = 1;
 99             }
100             else 
101             {
102                 ll c = mod - d * powmod(b, mod - 2) % mod;
103                 while (SZ(C) < SZ(B) + m) C.pb(0);
104                 rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod;
105                 ++m;
106             }
107         }
108         return C;
109     }
110     int gao(VI a, ll n) 
111     {
112         VI c = BM(a);
113         c.erase(c.begin());
114         rep(i, 0, SZ(c)) c[i] = (mod - c[i]) % mod;
115         return solve(n, c, VI(a.begin(), a.begin() + SZ(c)));
116     }
117 };
118 
119 int main() 
120 {
121     int t;
122     scanf("%d",&t);
123     while (t--) 
124     {
125         long long n;
126         scanf("%lld",&n);
127         vector<int>v({3,9,20,46,106,244,560,1286,2956,6794});
128         //VI{1,2,4,7,13,24}
129         printf("%lld\n", linear_seq::gao(v, n - 1));
130     }
131 }
View Code

 

posted @ 2018-09-18 17:09  甜酒果。  阅读(427)  评论(0编辑  收藏  举报