Python - opencv (四) - 模板匹配

模板匹配实现的思想也是很简单很暴力的,就是拿着模板图片在原图中从左上至右下依次滑动,直到遇到某个区域的相似度低于我们设定的阈值,那么我们就认为该区域与模板匹配了,也就是我们找到了姚明的位置,并把它标记出来。

opencv中提出6种模板匹配公式:

 

 

 

 

 

 

 

 

示例:

原图像:

 

 

匹配模板:

 

 

代码:

复制代码
 1 import cv2
 2 import matplotlib.pyplot as plt
 3 
 4 methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR', 'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
 5 
 6 
 7 if __name__ == '__main__':
 8     img = cv2.imread('../pics/5.jpg')
 9     template = cv2.imread('../pics/5-part.jpg')
10     (w,h) = (template.shape[1], template.shape[0])
11     count = 1
12 
13     for meths in methods:
14         img2 = img.copy()
15         method = eval(meths)
16         print(meths)
17         res = cv2.matchTemplate(img, template, method)
18         min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
19 
20         if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
21             top_left = min_loc
22         else:
23             top_left = max_loc
24         bottom_right = (top_left[0] + w, top_left[1] + h)
25 
26         cv2.rectangle(img2, top_left, bottom_right, 255, 2)
27 
28         plt.subplot(6,2,count), plt.imshow(res, cmap='gray')
29         plt.xticks([]), plt.yticks([])  # hide coordinate
30         plt.subplot(6,2,count+1), plt.imshow(img2, cmap='gray')
31         plt.xticks([]), plt.yticks([])
32         count += 2
33 
34     plt.show()
复制代码

效果:

(从上到下依次为:'cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR', 'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED')

 

 

 

 

 

可以看到效果基本可以找到,但当模板的尺寸发生变形时,cv的模板匹配就很难找到了。

 

posted @   Asp1rant  阅读(342)  评论(0编辑  收藏  举报
编辑推荐:
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具
点击右上角即可分享
微信分享提示