LeetCode No60. 排列序列

题目

给出集合 [1,2,3,...,n],其所有元素共有 n! 种排列。

按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:

"123"
"132"
"213"
"231"
"312"
"321"
给定 n 和 k,返回第 k 个排列。

示例 1:

输入:n = 3, k = 3
输出:"213"

示例 2:

输入:n = 4, k = 9
输出:"2314"

示例 3:

输入:n = 3, k = 1
输出:"123"

提示:

1 <= n <= 9
1 <= k <= n!

思路

求全排列的第k种情况,用的回溯方法,但是一直时间超限,看了下题解,剪枝还是要考虑全呀。

AC代码

点击查看代码
public class Solution {

    /**
     * 记录数字是否使用过
     */
    private boolean[] used;

    /**
     * 阶乘数组
     */
    private int[] factorial;

    private int n;
    private int k;

    public String getPermutation(int n, int k) {
        this.n = n;
        this.k = k;
        calculateFactorial(n);

        // 查找全排列需要的布尔数组
        used = new boolean[n + 1];
        Arrays.fill(used, false);

        StringBuilder path = new StringBuilder();
        dfs(0, path);
        return path.toString();
    }

    private void dfs(int index, StringBuilder path) {
        if (index == n) {
            return;
        }
        // 计算还未确定的数字的全排列的个数,第 1 次进入的时候是 n - 1
        int cnt = factorial[n - 1 - index];
        for (int i = 1; i <= n; i++) {
            if (used[i]) {
                continue;
            }
            if (cnt < k) {
                k -= cnt;
                continue;
            }
            path.append(i);
            used[i] = true;
            dfs(index + 1, path);
            // 注意 1:不可以回溯(重置变量),算法设计是「一下子来到叶子结点」,没有回头的过程
            // 注意 2:这里要加 return,后面的数没有必要遍历去尝试了
            return;
        }
    }

    private void calculateFactorial(int n) {
        factorial = new int[n + 1];
        factorial[0] = 1;
        for (int i = 1; i <= n; i++) {
            factorial[i] = factorial[i - 1] * i;
        }
    }
}
posted @ 2022-06-07 23:26  Asimple  阅读(13)  评论(0编辑  收藏  举报