刷题总结——魔术球问题(ssoj最小路径覆盖+网络流)
题目:
题目描述
假设有 n 根柱子,现要按下述规则在这 n 根柱子中依次放入编号为 1,2 ,3,… 的球。
(1)每次只能在某根柱子的最上面放球。
(2)在同一根柱子中,任何 2 个相邻球的编号之和为完全平方数。
试设计一个算法,计算出在 n 根柱子上最多能放多少个球。例如,在 4 根柱子上最多放 11 个球。
对于给定的 n,计算在 n 根柱子上最多能放多少个球。
输入格式
输入文件第 1 行有 1 个正整数 n(1<n<60),表示柱子数。
输出格式
输出 n 根柱子上最多能放的球数。
样例数据 1
备注
【样例说明】
最多能放 11 个球,下面 4 行,每行是一根柱子上的球的编号。
1 8
2 7 9
3 6 10
4 5 11
【思考以下输出样式】
将 n 根柱子上最多能放的球数以及相应的放置方案输出到文件中。
文件的第一行是球数。接下来的 n 行,每行是一根柱子上的球的编号。
题解:
首先可以想到这道题的策略肯定是向上枚举球的数量然后判断····
建图方法是:如果对于i<j有i+j为一个完全平方数,连接一条有向边(i,j)。该图是有向无环图,求最小路径覆盖。如果刚好满足最小路径覆盖数等于N,那么A是一个可行解,在所有可行解中找到最大的A,即为最优解。最小路径覆盖相关知识点如下:
有向无环图最小不相交路径覆盖
定义:用最少的不相交路径覆盖所有顶点。
定理:把原图中的每个点V拆成Vx和Vy,如果有一条有向边A->B,那么就加边Ax-By。这样就得到了一个二分图,最小路径覆盖=原图的节点数-新图最大匹配。
简单证明:一开始每个点都独立的为一条路径,总共有n条不相交路径。我们每次在二分图里加一条边就相当于把两条路径合成了一条路径,因为路径之间不能有公共点,所以加的边之间也不能有公共点,这就是匹配的定义。所以有:最小路径覆盖=原图的节点数-新图最大匹配。
因此每次枚举新的点加直接和之前的点枚加边即可···令外每次不用重新在图上跑网络流,记录一个group表示柱子数,和枚举的点数一起加减,然后用group减去新跑的流即可,这样就相当于枚举的点数减去在新图上完全新跑出的流(看不懂的看代码就可以了),即为最小路径覆盖
代码:
#include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> #include<ctime> #include<cctype> #include<cstring> #include<string> #include<algorithm> using namespace std; const int inf=1e+9; const int N=100005; int src=0,des=10000; int group,num,n; int first[N],next[N*2],go[N*2],rest[N*2],tot=1,lev[N],cur[N]; inline void comb(int a,int b,int c) { next[++tot]=first[a],first[a]=tot,go[tot]=b,rest[tot]=c; next[++tot]=first[b],first[b]=tot,go[tot]=a,rest[tot]=0; } inline bool bfs() { for(int i=src;i<=des;i++) cur[i]=first[i],lev[i]=-1; static int que[N],tail,u,v; que[tail=1]=src; lev[src]=0; for(int head=1;head<=tail;head++) { u=que[head]; for(int e=first[u];e;e=next[e]) { if(lev[v=go[e]]==-1&&rest[e]) { lev[v]=lev[u]+1; que[++tail]=v; if(v==des) return true; } } } return false; } inline int dinic(int u,int flow) { if(u==des) return flow; int res=0,delta,v; for(int &e=cur[u];e;e=next[e]) { if(lev[v=go[e]]>lev[u]&&rest[e]) { delta=dinic(v,min(flow-res,rest[e])); if(delta) { rest[e]-=delta; rest[e^1]+=delta; res+=delta; if(res==flow) break; } } } if(flow!=res) lev[u]=-1; return res; } inline void maxflow() { while(bfs()) group-=dinic(src,inf); } int main() { //freopen("a.in","r",stdin); scanf("%d",&n); while(true) { group++,num++; for(int i=1;i<num;i++) if(sqrt(i+num)==(int)sqrt(i+num)) comb(i,num+5000,1); comb(num+5000,des,1); comb(src,num,1); maxflow(); if(group>n) break; } cout<<num-1<<endl; return 0; }