Python的高阶函数小结
一. 高阶函数定义
简而言之,Python的高阶函数就是指一个函数作为参数传递给另外一个函数的用法。
举一个最简单的高阶函数来说明:
>>> def add(x,y,f): return f(x) + f(y) >>> add(1,-2,abs) 3
可能会有同学问,直接return abs(x) + abs(y)不就完了么,何必这么麻烦。
我的理解是把函数作为参数传递,能够使得编码涉及上更具有灵活性,比如我们可以根据某些变量的不同,传入不同的函数进去,这样能使得代码更简洁更好懂;不需要再重新写一大堆代码。
举个例子
>>> def area_circle(x): return 3.14*x*x >>> def area_square(x): return x*x >>> def area(x,p): return p(x) >>> area(2,area_circle) 12.56 >>> area(2,area_square) 4
在这个例子中,如果有了新的多边形(比如梯形等),我们只需要添加新的多边形的计算函数就可以,而函数def area永远都不需要变。配合dict,能使得代码更加的优雅。
>>> area_calculation={'circle':area_circle, 'square':area_square} >>> area_type = 'circle' >>> area(2,area_calculation[area_type]) 12.56
二. 几个比较有用的高阶函数 map/reduce, filter, sorted
map/reduce:
map/reduce的概念大家应该不是第一次接触,这个概念用的最广的地方应该就是分布式计算:将计算任务拆分给多个slave计算机,然后将计算结果汇总整合。其实说白了,map/reduce的概念的核心就在于:map是将任务拆分,然后将拆分后的任务分别计算。Reduce是将map得到的各个计算结果进行汇总。只要理解了这一层,但凡涉及到map/reduce的概念都可以迎刃而解。
- map()函数:接收两个参数,一个是函数,一个是可迭代对象 Iterable Object(关于可迭代对象Iterable Object和迭代器Iterator的概念请参考我的上一篇文章,讲得很清楚)。map()函数将传入的函数依次作用于可迭代对象的每个元素,并把结果作为Iterator返回。
下面举个例子:
>>> def f(x): return x*x >>> r = map(f,[1,2,3,4]) #对于Iterator,我们有三种方式可以访问到元素: #方式一:用next()函数访问 >>> next(r) 1 >>> next(r) 4 >>> next(r) 9 >>> next(r) 16 >>> next(r) Traceback (most recent call last): File "<pyshell#146>", line 1, in <module> next(r) StopIteration #方式二:利用for循环访问 >>> r = map(f,[1,2,3,4]) >>> for i in r: print(i) 1 4 9 16 #方式三: 转换为list列表 >>> r = map(f,[1,2,3,4]) >>> list(r) [1, 4, 9, 16]
- Reduce函数:同样的接收两个参数,一个是函数,一个是可迭代对象 Iterable Object(eg: list列表)。reduce中的函数必须也要接收2个参数,执行时把前一个结果继续和序列的下一个元素做累积计算,其效果就是:
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
举一个序列成数的例子(把序列[1,3,5,7,9变成13579])
>>> from functools import reduce
>>> def fn(x, y):
... return x * 10 + y
...
>>> reduce(fn, [1, 3, 5, 7, 9])
13579
- Map/Reduce常常一起配合使用,下面的例子是一个用Map/Reduce把str转换为int的函数:
from functools import reduce DIGITS = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9} def str2int(s): def fn(x, y): return x * 10 + y def char2num(s): return DIGITS[s] return reduce(fn, map(char2num, s))
Filter:
和map()
类似,filter()
也接收一个函数和一个序列。和map()
不同的是,filter()
把传入的函数依次作用于每个元素,然后根据返回值是True
还是False
决定保留还是丢弃该元素。
例如,在一个list中,删掉偶数,只保留奇数,可以这么写:
>>> def is_odd(n): return n % 2 == 1 >>> list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15])) [1, 5, 9, 15]
注意到filter()
函数返回的是一个Iterator
,也就是一个惰性序列,所以要强迫filter()
完成计算结果,需要用list()
函数获得所有结果并返回list。
Sorted:
排序是在程序中经常用到的算法。无论使用冒泡排序还是快速排序,排序的核心是比较两个元素的大小。如果是数字,我们可以直接比较,但如果是字符串或者两个dict呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来。
Python内置的sorted()
函数就可以对list进行排序:
>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]
此外,sorted()
函数也是一个高阶函数,它还可以接收一个key
函数来实现自定义的排序,例如按绝对值大小排序:
>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]
key指定的函数将作用于list的每一个元素上,并根据key函数返回的结果进行排序。
我们再看一个字符串排序的例子:
>>> sorted(['bob', 'about', 'Zoo', 'Credit']) ['Credit', 'Zoo', 'about', 'bob']
默认情况下,对字符串排序,是按照ASCII的大小比较的,由于'Z' < 'a'
,结果,大写字母Z
会排在小写字母a
的前面。
现在,我们提出排序应该忽略大小写,按照字母序排序。要实现这个算法,不必对现有代码大加改动,只要我们能用一个key函数把字符串映射为忽略大小写排序即可。忽略大小写来比较两个字符串,实际上就是先把字符串都变成大写(或者都变成小写),再比较。
这样,我们给sorted
传入key函数,即可实现忽略大小写的排序:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower) ['about', 'bob', 'Credit', 'Zoo']
要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True
:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True) ['Zoo', 'Credit', 'bob', 'about']
从上述例子可以看出,高阶函数的抽象能力是非常强大的,而且,核心代码可以保持得非常简洁。
参考链接: 廖雪峰Python教程--高阶函数