(1)
函数关系:functional relation
正相关:positive correlation
负相关:negative correlation
相关系数:correlation efficient
一元线性回归:simple linear regression
多元线性回归:multiple linear regression
参数:parameter
参数估计:parameter estimation
截距:intercept
斜率:slope
误差:error
残差:residual
拟合:fit
最小二乘法:method of least squares
残差平方和:residual sum of squares (RSS)
创建向量:create a vector
回归系数:regression coefficient
建立线性模型:create a linear model
内推插值:interpolate
外推归纳:extrapolate
回归诊断:regression diagnostics
离群值:outlier
多重共线性:multicollinearity
广义线性回归模型:generalized linear regression model
哑变量(虚拟变量):dummy variable
logistic回归:logistic regression
非线性回归:nonlinear regression
(2)
频繁模式挖掘:frequent pattern mining
无偏估计:unbiased estimation
最小二乘法:least square methods (LSM)
矩阵:matrix
系数:coefficient
截距项:intercept
随机误差:random error
广义逆:generalized inverse
有偏估计:biased estimation
岭回归:ridge regression
等价模型:equivalence model
惩罚模型:penalty function
估计族:class of estimators
岭参数:ridge parameter
岭迹图:ridge trace
方差扩大因子:variance inflation factor (VIF)
LASSO:least absolute shrinkage and selection operator
最小角回归:least angle regression (LAR)
(3)
主成分分析:principal component analysis
降维:dimension reduction
特征选择:feature selection
特征提取:feature extraction
协方差矩阵:covariance matrix
对角化:diagonalization
因子分析:factor analysis
因子载荷矩阵:factor loading matrix
特殊方差矩阵:special variance matrix
极大似然法:maximum likelihood method
正交旋转:orthorgonal rotation
因子得分:factor score
(4)
分类模型:classification model
线性判别法:linear discriminant analysis
线性分类器:Linear Classifier
距离判别法:distance discriminant method
k-NN algorithm(k-最近邻算法):k-Nearest Neighbors algorithm (or k-NN for short)
朴素贝叶斯分类器:Naïve Bayes Classifier
决策树:decision tree
支持向量机:support vector machines (SVM)
神经网络:neural network
文本挖掘:text mining
贝叶斯信念网络:Bayesian belief network
条件概率:conditional probability
先验概率:prior probability
后验概率:posterior probability
条件概率表:conditional probability table (CPT)
贝叶斯推理:Bayesian reasoning
(5)
决策树:decision tree
ID3算法(迭代二叉树3代):iterative dichotomiser 3
分类与回归树:classification and regression tree(CART)
信息增益:information gain (IG)
分裂属性:splitting attribute
剪枝:pruning
代价复杂度:cost-complexity
组合算法:combinatorial algorithm
装袋算法:bagging algorithm
提升算法:boosting algorithm
AdaBoost(Adaptive Boosting:
自适应增强)算法:Adaboost algorithm
随机森林算法:random forest algorithm
(6)
支持向量机:support vector machines (SVM)
线性可分:linearly-separable
最优分离平面:optimal separating plane
决策边界:decision boundary
最大边缘超平面:maximum marginal hyperplane (MMH)
凸优化问题:convex optimization problem
拉格朗日乘子法:lagrange multiplier method
KKT条件:Karush-Kuhn-Tucker conditions
对偶:duality
松弛变量:slack variable
惩罚函数:penalty function
SMO算法(序列最小优化算法):sequential minimal optimization
高维空间:high dimension space
维度灾难:curse of dimensionality
核函数:kernel function
高斯径向基函数:Gaussian radial basis function
Mercer定理:Mercer's theorem
(7)
人工神经网络:artificial neural network
神经元,神经细胞:neuron
树突:dendrite
轴突:axon
细胞体:cell body
突触:synapsis
单层感知器:single-layer perceptron
线性神经网络:linear neural network
BP神经网络:BP Neural Network
输入节点:input node
输出节点:output node
权向量:weight vector
偏置因子(偏因):bias factor
激活函数:activation function
自学习算法:self-learning algorithm
学习率:learning rate
权重:weight
偏移:bias
偏置值:bias value
平均绝对误差:mean absolute error
均方误差:mean square error
误差平方和:square error sum
拓扑:topology
前馈型网络:feedforward networks
反馈型网络:feedback network
学习规则:learning rule
线性神经网络:linear neural network
梯度下降法:gradient descent algorithm
(8)
深度学习:deep learning
有监督学习:supervised learning
无监督学习:unsupervised learning
半监督学习:semi-supervised learning
BP神经网络:BP Neural Network
误差反向传播算法:error back-propagation algorithm
多层前馈神经网络:multilayer feed-forward neural network
最速下降法:method of steepest descent
图像压缩:image compression
Hopfield神经网络:Hopfield neural network
光学字符识别:Optical Character Recognition (OCR)
PCA(Principal Component Analysis)神经网络:PCA Neural Network
神经网络芯片:neural network chip
通用逼近器:universal approximator
径向基函数神经网络:radial basis function neural network (RBFNN)
正则化RBF神经网络:normalized RBF neural network (NRBFNN))
广义RBF神经网络:Generalized RBF neural network
概率神经网络:probabilistic neural network
贝叶斯信念网络:Bayesian belief network
(9)
贝叶斯信念网络:Bayesian belief network
梯度计算:gradient computation
权重更新:weight updating
聚类:clustering
孤立点(离群值、异常值):outlier
距离:distance
绝对值距离:absolute value distance
欧氏(欧几里得)距离:Euclidean distance
闵可夫斯基:Minkowski distance
切比雪夫距离:Chebyshev distance
马氏(马哈拉诺比斯)距离:Mahalanobis distance
兰氏距离:Lance and Williams distance / Canberra Distance
离散变量:discrete variable
数据中心化与标准化:data centralization and standardization
极差(全距):range
相似系数:similarity coefficient
夹角余弦:included angle cosine
相关系数:correlation coefficient
凝聚聚类算法:aggregate clustering algorithm
层次聚类法:hierarchical clustering
动态聚类:dynamic clustering
K-means 算法:K-means algorithm
K中心聚类法:k-medoids clustering
围绕中心点的划分算法:Partitioning Around Medoids (PAM)
CLARA 算法:CLARA algorithm (Clustering for LARge Applications)
基于密度的聚类:density-based clustering
DBSCAN 聚类算法:DBSCAN (A Density-Based Spatial Clustering of Application) clustering algorithm
基于网格的聚类算法:Grid-Based Clustering Algorithm
CLIQUE算法:CLIQUE (CLustering In QUEst) Algorithm
稠密单元:dense unit
簇的装配:assembling of cluster
最小覆盖:minimum covering
贪心算法:greedy algorithm
(10)
霍普金斯统计量:Hopkins statistic
簇数制定:determining the number of clusters
肘方法:elbow method
伪F统计量:pseudo f-statistics (PSF)
伪T平方统计量:Pseudo-T2 Statistic (PST2):
B-cubed聚类评分:B-cubed cluster scoring
轮廓系数:silhouette coefficient
模糊聚类:fuzzy clustering
误差平方和:square sum of error (SSE)
基于概率模型的聚类:probabilistic-model-based clustering
概率聚类:probabilistic clustering
最大似然估计:maximum likelihood estimation
最大期望算法:expectation-maximization (EM) algorithm
混合模型:hybrid model
离群值检测:outlier detection
基于直方图的离群值检测:histogram-based outlier detection
基于邻域的离群值检测:neighborhood-based outlier detection
基于网格的离群值检测:grid-based outlier detection
基于聚类的离群值检测:clustering-based outlier detection