图由顶点和边 组成的一种结构G=(V,E )

图的存储结构 (邻接矩阵)

图的遍历

深度优先算法

随便走,等到无路可走,退回重新走,直到图被遍历完。

/*
 * 定义图的结构
 */
public class Graph {
    //节点数目
    protected int size;
    //定义数组,保存顶点信息
    protected String[] nodes;

    //定义矩阵保存顶点信息
    protected int[][] edges;

    /**
     *      A B C D E F G
     *   A  0 0 1 1 0 1 0
     *   B  0 0 1 0 0 0 0
     *   C  1 1 0 1 0 0 0
     *   D  1 0 1 0 0 0 0
     *   E  0 0 0 0 0 0 1
     *   F  1 0 0 0 0 0 1
     *   G  0 0 0 0 1 1 0
     */
    public Graph(){
        //初始化顶点
        nodes = new String[]{"A","B","C","D","E","F","G"};
        size=nodes.length;

        //初始化边---- 为了直观,做一个常量定义
        final int A=0,B=1,C=2,D=3,E=4,F=5,G=6;
        edges = new int[size][size];
        edges[A][C] = 1;
        edges[A][D] = 1;
        edges[A][F] = 1;
        edges[B][C] = 1;
        edges[C][A] = 1;
        edges[C][D] = 1;
        edges[C][B] = 1;
        edges[D][A] = 1;
        edges[D][C] = 1;
        edges[E][G] = 1;
        edges[F][A] = 1;
        edges[F][G] = 1;
        edges[G][F] = 1;
        edges[G][E] = 1;
    }
}
 private int[] visit = new int[size];     //遍历标志,防止死环遍历

    /**
     * 深度优先遍历
     * 一条路走到黑,不撞南墙不回头
     * 对每一个可能的分支路径深入到不能再深入为止
     */
    public void DeepFirst(int start) {//从第n个节点开始遍历

        visit[start] = 1;              //标记为1表示该顶点已经被处理过
        System.out.println("齐天大圣到—>" + this.nodes[start]+"一游"); //输出节点数据

        for (int i=0;i<this.size;i++){
            if (this.edges[start][i] == 1 && visit[i]==0){
                //邻接点
                DeepFirst(i);
            }
        }

    }

广度优先算法

访问节点所有可以到达的节点,再把访问到的节点的临界节点都找出来

    /**
     * 广度优先遍历
     * 广度优先搜索遍历图的过程中以v 为起始点,由近至远,
     * 依次访问和v 有路径相通且路径长度为1,2,…的顶点
     * 第一批节点的邻接点,?
     */
    private int[] queue = new int[size];
    public void BreadthFirst(int front,int tail) {
        int last = tail;

        for (int index=front;index<=tail;index++){
            int node = queue[index];

            System.out.println("齐天大圣到—>" + this.nodes[node]+"一游"); //输出节点数据
            //找出所有的邻接点
            for (int i=0;i<this.size;i++){
                if (this.edges[node][i] == 1 && visit[i]==0){
                    //邻接点
                    visit[i] = 1;
                    queue[++last] = i;

                }
            }
        }

        //遍历下一批节点
        if (last > tail){
            BreadthFirst(tail+1,last);
        }

    }

    public void BreadthFirst(int start){
        queue[0] = start;
        visit[start] = 1;
        BreadthFirst(0,0);
    }

    public static void main(String[] args) {
        GraphCover graph = new GraphCover();

        graph.BreadthFirst(0);
    }
}

找出图中最短路径

得到图的最短路径树

迪杰斯特拉算法 Dijkstra

扩展知识

int i = Integer.Max_VALUE;

i= Integer.MAX_VALUE ,即 i = 2147483647,i再加1,就变成了-2147483648

package com.enjoy.graph;

public class Dijkstra {
   //节点数目
   protected int size;
   //定义数组,保存顶点信息
   protected String[] nodes;

   //定义矩阵保存顶点信息
   protected int[][] edges;

   private int[] isMarked;//节点确认--中心标识
   private String[] path;//源到节点的路径信息
   private int[] distances;//源到节点的距离

   public Dijkstra(){
      init();

      isMarked = new int[size];
      path = new String[size];
      distances = new int[size];

      for (int i=0;i<size;i++){
         path[i] = "";
         distances[i] = Integer.MAX_VALUE;
      }
   }

   public static void main(String[] args) {
      Dijkstra dijkstra = new Dijkstra();
      dijkstra.search(3);
   }

   public void search(int node){
      path[node] = nodes[node];
      distances[node] = 0;

      do {
         flushlast(node);
         node = getShort();
      }while (node != -1);
   }

   //1、扫描AA邻接点,记录邻接点权重值
   private void flushlast(int node){
      isMarked[node] = 1;
      System.out.println(path[node]);
      //扫描邻接点
      for (int i=0;i<size;i++){
         if (this.edges[node][i] > 0){
            //计算AA节点到 i节点的权重值
            int distant = distances[node] + this.edges[node][i];
            if (distant < distances[i]){
               distances[i] = distant;
               path[i] = path[node] +"-->"+ nodes[i];
            }
         }
      }
   }

// 2、找出邻接点里最小的那个值
   private int getShort(){
      int last = -1;

      int min = Integer.MAX_VALUE;
      for (int i=0;i<size;i++){

         if (isMarked[i] == 1){
            continue;
         }

         if (distances[i] < min){
            min = distances[i];
            last = i;
         }
      }

      return last;
   }


   public void init(){
      //初始化顶点
      nodes = new String[]{"AA","A","B","C","D","E","F","G","H","M","K","N"};
      //节点编号-常量
      final int AA=0,A=1,B=2,C=3,D=4,E=5,F=6,G=7,H=8,M=9,K=10,N=11;
      size=nodes.length;

      edges = new int[size][size];
      edges[AA][A] = 3;
      edges[AA][B] = 2;
      edges[AA][C] = 5;
      edges[A][AA] = 3;
      edges[A][D] = 4;
      edges[B][AA] = 2;
      edges[B][C] = 2;
      edges[B][G] = 2;
      edges[B][E] = 3;
      edges[C][AA] = 5;
      edges[C][E] = 2;
      edges[C][B] = 2;
      edges[C][F] = 3;
      edges[D][A] = 4;
      edges[D][G] = 1;
      edges[E][B] = 3;
      edges[E][C] = 2;
      edges[E][F] = 2;
      edges[E][K] = 1;
      edges[E][H] = 3;
      edges[E][M] = 1;
      edges[F][C] = 3;
      edges[F][E] = 2;
      edges[F][K] = 4;
      edges[G][B] = 2;
      edges[G][D] = 1;
      edges[G][H] = 2;
      edges[H][G] = 2;
      edges[H][E] = 3;
      edges[K][E] = 1;
      edges[K][F] = 4;
      edges[K][N] = 2;
      edges[M][E] = 1;
      edges[M][N] = 3;
      edges[N][K] = 2;
      edges[N][M] = 3;
   }

}

工程施工图

  • 发动机为关键节点(工程完成的时间取决于发动机节点完成的时间)

  • 这种依赖图不能出现循环

分析图的依赖的问题,解决依赖问题

package com.enjoy.graph;

import java.util.Stack;

public class Aov {
   //节点数目
   protected int size;
   //定义数组,保存顶点信息
   protected String[] nodes;

   //定义矩阵保存顶点信息
   protected int[][] edges;

   public Aov(){
      init();
   }

   //入度数组
   private int[] eSize;
   private int[] fast;//最早时间
   private int[] last;//最晚时间
   public static void main(String[] args) {
      Aov aov = new Aov();
      aov.flush();
//    int[] path = aov.getPath();
      aov.exeKey();
   }

   public void exeKey(){
      int[] path = getPath();
      int start = path[0],end = path[size-1];

      exeFast(start);

      for (int i=0;i<size;i++){//初始化成工程最大值
         last[i] = fast[end];
      }
      exeLast(end);

      for (int i=0;i<size;i++){
         int node = path[i];
         if (fast[node] == last[node]){
            System.out.print("--->"+nodes[node]);
         }
      }

      System.out.println();
   }


   private void exeFast(int node){
      for (int i=0;i<size;i++){
         if (this.edges[node][i] > 0){
            int cost = fast[node] + this.edges[node][i];
            if (cost > fast[i]){
               fast[i] = cost;
               exeFast(i);
            }
         }
      }
   }

   private void exeLast(int node){
      for (int i=0;i<size;i++){
         if (this.edges[i][node] > 0){
            int cost = last[node] - this.edges[i][node];
            if (cost < last[i]){
               last[i] = cost;
               exeLast(i);
            }
         }
      }
   }


   //1、计算出各个节点的入度
   private void flush(){
      eSize = new int[size];

      for (int node=0;node<size;node++){
         for (int i=0;i<size;i++){
            if (edges[i][node] > 0){
               eSize[node]++;
            }
         }
      }
   }

   private int[] getPath(){
      int count = 0;
      int[] path = new int[size];

      // 2、入度为0节点入队
//    Queue<Integer> queue = new LinkedList<>();
      Stack<Integer> stack = new Stack<>();
      for (int i=0;i<size;i++){
         if (eSize[i] == 0){
//          queue.offer(i);
            stack.push(i);
         }
      }

      // 3、入队节点的邻接点入度-1
      while (!stack.empty()){
         Integer node = stack.pop();

//       System.out.print("---->"+nodes[node]);
         path[count++] = node;

         for (int i=0;i<size;i++){
            if (this.edges[node][i] > 0){
               eSize[i]-- ;
               if (eSize[i] == 0){
//                queue.offer(i);
                  stack.push(i);
               }
            }
         }
      }


      return path;
   }




   public void init(){
      //初始化顶点
      nodes = new String[]{"AA","A","B","C","D","E","F","G","H","M","K","N"};
      //节点编号-常量
      final int AA=0,A=1,B=2,C=3,D=4,E=5,F=6,G=7,H=8,M=9,K=10,N=11;
      size=nodes.length;

      fast = new int[size];
      last = new int[size];

      edges = new int[size][size];
      edges[AA][A] = 3;
      edges[AA][B] = 2;
      edges[AA][C] = 5;
      edges[A][D] = 4;
      edges[B][G] = 2;
      edges[B][E] = 3;
      edges[C][E] = 2;
      edges[C][F] = 3;
      edges[D][G] = 1;
      edges[E][K] = 1;
      edges[E][M] = 8;
      edges[F][K] = 4;
      edges[G][H] = 2;
      edges[H][M] = 3;
      edges[K][N] = 2;
      edges[M][N] = 3;
   }
}

关键路径

posted @ 2021-03-10 00:10  AronJudge  阅读(124)  评论(0编辑  收藏  举报