Mapreduce实例——MapReduce自定义输出格式

当面对一些特殊的<key,value>键值对时,要求开发人员继承FileOutputFormat,用于实现一种新的输出格式。同时还需继承RecordWriter,用于实现新输出格式key和value的写入方法。现在我们有某电商数据表cat_group1,包含(分组id,分组名称,分组码,奢侈品标记)四个字段cat_group1的数据内容如下:

分组id,分组名称,分组码,奢侈品标记
512,奢侈品,c,1
675,箱包,1,1
676,化妆品,2,1
677,家电,3,1
501,有机食品,1,0
502,蔬菜水果,2,0
503,肉禽蛋奶,3,0
504,深海水产,4,0
505,地方特产,5,0
506,进口食品,6,0
cat_group1(group_id,group_name,group_code,flag)

要求把相同奢侈品标记(flag)的数据放入到一个文件里,并且以该字段来命名文件的名称,输出时key与value 以“:”分割,形如"key:value"

结果输出0.txt和1.txt两文件:

MyMultipleOutputFormat类

package mapreduce12;

import java.io.DataOutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;
import java.util.HashMap;
import java.util.Iterator;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.mapreduce.OutputCommitter;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.ReflectionUtils;

//11. Mapreduce实例——MapReduce自定义输出格式
public abstract class MyMultipleOutputFormat <K extends WritableComparable<?>,V extends Writable> extends FileOutputFormat<K,V>{
    private MultiRecordWriter writer=null;
    public RecordWriter<K,V> getRecordWriter(TaskAttemptContext job) throws IOException{
        if(writer==null){
            writer=new MultiRecordWriter(job,getTaskOutputPath(job));
        }
        return writer;
    }
    private Path getTaskOutputPath(TaskAttemptContext conf) throws IOException{
        Path workPath=null;
        OutputCommitter committer=super.getOutputCommitter(conf);
        if(committer instanceof FileOutputCommitter){
            workPath=((FileOutputCommitter) committer).getWorkPath();
        }else{
            Path outputPath=super.getOutputPath(conf);
            if(outputPath==null){
                throw new IOException("Undefined job output-path");
            }
            workPath=outputPath;
        }
        return workPath;
    }
    protected abstract String generateFileNameForKayValue(K key,V value,Configuration conf);
    protected static class LineRecordWriter<K,V> extends RecordWriter<K, V> {
        private static final String utf8 = "UTF-8";
        private static final byte[] newline;
        private PrintWriter tt;
        static {
            try {
                newline = "\n".getBytes(utf8);
            } catch (UnsupportedEncodingException uee) {
                throw new IllegalArgumentException("can't find " + utf8 + " encoding");
            }
        }

        protected DataOutputStream out;
        private final byte[] keyValueSeparator;

        public LineRecordWriter(DataOutputStream out, String keyValueSeparator) {
            this.out = out;
            try {
                this.keyValueSeparator = keyValueSeparator.getBytes(utf8);
            } catch (UnsupportedEncodingException uee) {
                throw new IllegalArgumentException("can't find " + utf8 + " encoding");
            }
        }

        public LineRecordWriter(DataOutputStream out) {
            this(out, ":");
        }
        private void writeObject(Object o) throws IOException {
            if (o instanceof Text) {
                Text to = (Text) o;
                out.write(to.getBytes(), 0, to.getLength());
            } else {
                out.write(o.toString().getBytes(utf8));
            }
        }

        public synchronized void write(K key, V value)
                throws IOException {
            boolean nullKey = key == null || key instanceof NullWritable;
            boolean nullValue = value == null || value instanceof NullWritable;
            if (nullKey && nullValue) {//
                return;
            }
            if (!nullKey) {
                writeObject(key);
            }
            if (!(nullKey || nullValue)) {
                out.write(keyValueSeparator);
            }
            if (!nullValue) {
                writeObject(value);
            }
            out.write(newline);

        }

        public synchronized
        void close(TaskAttemptContext context) throws IOException {
            out.close();
        }
    }
    public class MultiRecordWriter extends RecordWriter<K,V>{
        private HashMap<String,RecordWriter<K,V> >recordWriters=null;
        private TaskAttemptContext job=null;
        private Path workPath=null;
        public MultiRecordWriter(TaskAttemptContext job,Path workPath){
            super();
            this.job=job;
            this.workPath=workPath;
            recordWriters=new HashMap<String,RecordWriter<K,V>>();

        }
        public void close(TaskAttemptContext context) throws IOException, InterruptedException{
            Iterator<RecordWriter<K,V>> values=this.recordWriters.values().iterator();
            while(values.hasNext()){
                values.next().close(context);
            }
            this.recordWriters.clear();
        }
        public void write(K key,V value) throws IOException, InterruptedException{
            String baseName=generateFileNameForKayValue(key ,value,job.getConfiguration());
            RecordWriter<K,V> rw=this.recordWriters.get(baseName);
            if(rw==null){
                rw=getBaseRecordWriter(job,baseName);
                this.recordWriters.put(baseName,rw);
            }
            rw.write(key, value);
        }


        private RecordWriter<K,V> getBaseRecordWriter(TaskAttemptContext job,String baseName)throws IOException,InterruptedException{
            Configuration conf=job.getConfiguration();
            boolean isCompressed=getCompressOutput(job);
            String keyValueSeparator= ":";
            RecordWriter<K,V> recordWriter=null;
            if(isCompressed){
                Class<?extends CompressionCodec> codecClass=getOutputCompressorClass(job,(Class<?extends CompressionCodec>) GzipCodec.class);
                CompressionCodec codec=ReflectionUtils.newInstance(codecClass,conf);
                Path file=new Path(workPath,baseName+codec.getDefaultExtension());
                FSDataOutputStream fileOut=file.getFileSystem(conf).create(file,false);
                recordWriter=new LineRecordWriter<K,V>(new DataOutputStream(codec.createOutputStream(fileOut)),keyValueSeparator);
            }else{
                Path file=new Path(workPath,baseName);
                FSDataOutputStream fileOut=file.getFileSystem(conf).create(file,false);
                recordWriter =new LineRecordWriter<K,V>(fileOut,keyValueSeparator);
            }
            return recordWriter;
        }
    }
}

FileOutputMR类

package mapreduce12;

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

//11. Mapreduce实例——MapReduce自定义输出格式
public class FileOutputMR {
    public static class TokenizerMapper extends Mapper<Object,Text,Text,Text>{
        private Text val=new Text();
        public void map(Object key,Text value,Context context)throws IOException,InterruptedException{
            String str[]=value.toString().split(",");
            val.set(str[0]+" "+str[1]+" "+str[2]);
            context.write(new Text(str[3]), val);
        }
    }
    public static class IntSumReducer extends Reducer<Text,Text,Text,Text>{
        public void reduce(Text key,Iterable<Text> values,Context context)
                throws IOException,InterruptedException{
            for(Text val:values){
                context.write(key,val);
            }
        }
    }
    public static class AlphabetOutputFormat extends MyMultipleOutputFormat<Text,Text>{
        protected String generateFileNameForKayValue(Text key,Text value,Configuration conf){
            return key+".txt";
        }
    }
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException{
        Configuration conf=new Configuration();
        Job job=new Job(conf,"FileOutputMR");
        job.setJarByClass(FileOutputMR.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        job.setOutputFormatClass(AlphabetOutputFormat.class);
        FileInputFormat.addInputPath(job,new Path("hdfs://192.168.51.100:8020/mymapreduce12/in/cat_group1"));
        FileOutputFormat.setOutputPath(job,new Path("hdfs://192.168.51.100:8020/mymapreduce12/out"));
        System.exit(job.waitForCompletion(true)?0:1);
    }
}

结果:

 

原理:

1.输出格式:提供给OutputCollector的键值对会被写到输出文件中,写入的方式由输出格式控制。OutputFormat的功能跟前面描述的InputFormat类很像,Hadoop提供的OutputFormat的实例会把文件写在本地磁盘或HDFS上。在不做设置的情况下,计算结果会以part-000*输出成多个文件,并且输出的文件数量和reduce数量一样,文件内容格式也不能随心所欲。每一个reducer会把结果输出写在公共文件夹中一个单独的文件内,这些文件的命名一般是part-nnnnn,nnnnn是关联到某个reduce任务的partition的id,输出文件夹通过FileOutputFormat.setOutputPath() 来设置。你可以通过具体MapReduce作业的JobConf对象的setOutputFormat()方法来设置具体用到的输出格式。下表给出了已提供的输出格式:

Hadoop提供了一些OutputFormat实例用于写入文件,基本的(默认的)实例是TextOutputFormat,它会以一行一个键值对的方式把数据写入一个文本文件里。这样后面的MapReduce任务就可以通过KeyValueInputFormat类简单的重新读取所需的输入数据了,而且也适合于人的阅读。还有一个更适合于在MapReduce作业间使用的中间格式,那就是SequenceFileOutputFormat,它可以快速的序列化任意的数据类型到文件中,而对应SequenceFileInputFormat则会把文件反序列化为相同的类型并提交为下一个Mapper的输入数据,方式和前一个Reducer的生成方式一样。NullOutputFormat不会生成输出文件并丢弃任何通过OutputCollector传递给它的键值对,如果你在要reduce()方法中显式的写你自己的输出文件并且不想Hadoop框架输出额外的空输出文件,那这个类是很有用的。

RecordWriter:这个跟InputFormat中通过RecordReader读取单个记录的实现很相似,OutputFormat类是RecordWriter对象的工厂方法,用来把单个的记录写到文件中,就像是OuputFormat直接写入的一样。

2.与IntputFormat相似, 当面对一些特殊情况时,如想要Reduce支持多个输出,这时Hadoop本身提供的TextOutputFormat、SequenceFileOutputFormat、NullOutputFormat等肯定是无法满足我们的需求,这时我们需要自定义输出数据格式。类似输入数据格式,自定义输出数据格式同样可以参考下面的步骤:

(1) 自定义一个继承OutputFormat的类,不过一般继承FileOutputFormat即可;

(2)实现其getRecordWriter方法,返回一个RecordWriter类型;

(3)自定义一个继承RecordWriter的类,定义其write方法,针对每个<key,value>写入文件数据;

 

posted @ 2021-11-19 13:48  Arisf  阅读(67)  评论(0编辑  收藏  举报