Mapreduce实例——单表join

现有某电商的用户好友数据文件,名为 buyer1,buyer1中包含(buyer_id,friends_id)两个字段,内容是以"\t"分隔,编写MapReduce进行单表连接,查询出用户的间接好友关系。例如:10001的好友是10002,而10002的好友是10005,那么10001和10005就是间接好友关系。

buyer1(buyer_id,friends_id)
10001    10002
10002    10005
10003    10002
10004    10006
10005    10007
10006    10022
10007    10032
10009    10006
10010    10005
10011    10013
buyer1

mapreduce程序:

package mapreduce7;

import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;


//04.Mapreduce实例——单表join
public class DanJoin {
    public static class Map extends Mapper<Object,Text,Text,Text>{
        public void map(Object key,Text value,Context context)
                throws IOException,InterruptedException{
            String line = value.toString();
            String[] arr = line.split("\t");
            String mapkey=arr[0];
            String mapvalue=arr[1];
            String relationtype=new String();
            relationtype="1";
            context.write(new Text(mapkey),new Text(relationtype+"+"+mapvalue));
            //System.out.println(relationtype+"+"+mapvalue);
            relationtype="2";
            context.write(new Text(mapvalue),new Text(relationtype+"+"+mapkey));
            //System.out.println(relationtype+"+"+mapvalue);
        }
    }
    public static class Reduce extends Reducer<Text, Text, Text, Text>{
        public void reduce(Text key,Iterable<Text> values,Context context)
                throws IOException,InterruptedException{
            int buyernum=0;
            String[] buyer=new String[20];
            int friendsnum=0;
            String[] friends=new String[20];
            Iterator ite=values.iterator();
            while(ite.hasNext()){
                String record=ite.next().toString();
                int len=record.length();
                int i=2;
                if(0==len){
                    continue;
                }
                char relationtype=record.charAt(0);
                if('1'==relationtype){
                    buyer [buyernum]=record.substring(i);
                    buyernum++;
                }
                if('2'==relationtype){
                    friends[friendsnum]=record.substring(i);
                    friendsnum++;
                }
            }
            if(0!=buyernum&&0!=friendsnum){
                for(int m=0;m<buyernum;m++){
                    for(int n=0;n<friendsnum;n++){
                        if(buyer[m]!=friends[n]){
                            context.write(new Text(buyer[m]),new Text(friends[n]));
                        }
                    }
                }
            }
        }
    }
    public static void main(String[] args) throws Exception{

        Configuration conf=new Configuration();
        String[] otherArgs=new String[2];
        otherArgs[0]="hdfs://192.168.51.100:8020/mymapreduce7/in/buyer1";
        otherArgs[1]="hdfs://192.168.51.100:8020/mymapreduce7/out";
        Job job=new Job(conf," Table join");
        job.setJarByClass(DanJoin.class);
        job.setMapperClass(Map.class);
        job.setReducerClass(Reduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
        System.exit(job.waitForCompletion(true)?0:1);

    }
}

结果:

原理:

以本实验的buyer1(buyer_id,friends_id)表为例来阐述单表连接的实验原理。单表连接,连接的是左表的buyer_id列和右表的friends_id列,且左表和右表是同一个表。因此,在map阶段将读入数据分割成buyer_id和friends_id之后,会将buyer_id设置成key,friends_id设置成value,直接输出并将其作为左表;再将同一对buyer_id和friends_id中的friends_id设置成key,buyer_id设置成value进行输出,作为右表。为了区分输出中的左右表,需要在输出的value中再加上左右表的信息,比如在value的String最开始处加上字符1表示左表,加上字符2表示右表。这样在map的结果中就形成了左表和右表,然后在shuffle过程中完成连接。reduce接收到连接的结果,其中每个key的value-list就包含了"buyer_idfriends_id--friends_idbuyer_id"关系。取出每个key的value-list进行解析,将左表中的buyer_id放入一个数组,右表中的friends_id放入一个数组,然后对两个数组求笛卡尔积就是最后的结果

posted @ 2021-11-19 11:16  Arisf  阅读(62)  评论(0编辑  收藏  举报