「CSP-S模拟赛」2019第二场


这场考试的数据感觉很水。
\(T1\) 签到不解释,\(T2\) 期望 \(50pts\) 结果有 \(100pts\)\(T3\) 一如既往地不可做...


T1 Jam的计数法

题目

点这里

考场思路(正解)

其实没有什么好说的,找找规律即可,看看代码吧。

#include<cstdio>
// #define FILEOI
#define rep(i,__l,__r) for(int i=__l,i##_end_=__r;i<=i##_end_;++i)
#define dep(i,__l,__r) for(int i=__l,i##_end_=__r;i>=i##_end_;--i)
#define cg (c=getchar())
template<class T>inline void qread(T& x){
	x=0;char c;bool f=0;
	while(cg<'0'||'9'<c)if(c=='-')f=1;
	for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
	if(f)x=-x;
}
template<class T,class... Args>inline void qread(T& x,Args&... args){qread(x),qread(args...);}
inline int qread(){
	int x=0;char c;bool f=0;
	while(cg<'0'||'9'<c)if(c=='-')f=1;
	for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
	return f?x:-x;
}
#undef cg
template<class T>inline T Max(const T x,const T y){return x>y?x:y;}
template<class T>inline T Min(const T x,const T y){return x<y?x:y;}
template<class T>inline T fab(const T x){return x>0?x:-x;}
template<class T>void fwrit(T x){
	if(x<0)return (void)(putchar('-'),fwrit(-x));
	if(x>10)fwrit(x/10);
	return (void)(putchar(x%10^48));
}

const int MAXW=25;
int s,t,w,num[(MAXW<<2)+5],T=5;
char sn[(MAXW<<2)+5];

inline void init(){
	qread(s,t,w);
	scanf("%s",sn+1);
	rep(i,1,w)num[i]=sn[i]-'a'+1;
}

inline void putNum(){
	for(int i=1;i<=w;++i)printf("%c",num[i]+'a'-1);
	putchar('\n');
}

inline void addOne(){
	bool f=true;
	for(int i=w;i>=1;--i)if(num[i]<t-w+i){
		++num[i],f=false;
		for(int j=i+1;j<=w;++j)num[j]=num[j-1]+1;
		break;
	}
	if(f)return;
	putNum();
}

signed main(){
#ifdef FILEOI
	freopen("number.in","r",stdin);
	freopen("number.out","w",stdout);
#endif
	init();
	while(T--)addOne();
	return 0;
}

T2 「TJOI / HEOI2016」排序

题目

点这里

考场思路(假正解)

直接看的 \(50\%\) 的数据范围,发现可以使用区间桶排序,时间复杂度 \(O(nm)\)

#include<cstdio>
// #define FILEOI
#define rep(i,__l,__r) for(int i=__l,i##_end_=__r;i<=i##_end_;++i)
#define dep(i,__l,__r) for(int i=__l,i##_end_=__r;i>=i##_end_;--i)
#define cg (c=getchar())
template<class T>inline void qread(T& x){
	x=0;char c;bool f=0;
	while(cg<'0'||'9'<c)if(c=='-')f=1;
	for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
	if(f)x=-x;
}
template<class T,class... Args>inline void qread(T& x,Args&... args){qread(x),qread(args...);}
inline int qread(){
	int x=0;char c;bool f=1;
	while(cg<'0'||'9'<c)if(c=='-')f=0;
	for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
	return f?x:-x;
}
#undef cg
template<class T>inline T Max(const T x,const T y){return x>y?x:y;}
template<class T>inline T Min(const T x,const T y){return x<y?x:y;}
template<class T>inline T fab(const T x){return x>0?x:-x;}
template<class T>void fwrit(T x){
	if(x<0)return (void)(putchar('-'),fwrit(-x));
	if(x>10)fwrit(x/10);
	return (void)(putchar(x%10^48));
}

const int MAXN=1e5;

int n,m,q,a[MAXN+5],t[MAXN+5];

inline void init(){
	qread(n,m);
	rep(i,1,n)qread(a[i]);
}

inline void getOperation(){
	int op,l,r,li,ri;
	while(m--){
		li=n,ri=0;
		qread(op,l,r);
		rep(i,l,r)++t[a[i]],li=Min(li,a[i]),ri=Max(ri,a[i]);
		if(op==0){
			rep(i,l,r){
				while(t[li]==0)++li;
				a[i]=li,t[li]=0;
			}
		}
		else if(op==1){
			rep(i,l,r){
				while(t[ri]==0)--ri;
				a[i]=ri,t[ri]=0;
			}
		}
	}
	printf("%d\n",a[qread()]);
}

signed main(){
#ifdef FILEOI
	freopen("sort.in","r",stdin);
	freopen("sort.out","w",stdout);
#endif
	init();
	getOperation();
	return 0;
}

期望得分只有 \(50pts\),但是数据测出来,居然可以 \(A\) 掉...所以叫伪正解...

正解

我们发现,对于一个 \(x\),将小于 \(x\) 的数换成 \(0\),大于等于 \(x\) 的数换成 \(1\) 之后,所得到的排序结果其实是一样的。
但是这样做有唯一的缺陷,就是我们只知道最后 \(q\) 位置的数是 \(0\) 还是 \(1\)
其实很好解决,二分这个 \(x\) 即可。
这里先把标称附上
std version

#include <cstdio>
#include <cstring>
#include <cctype>
#define lc o << 1
#define rc o << 1 | 1
#define mid (l + r) / 2
using namespace std;

const int N = 100010;
int n, m, p;
int T[4 * N], lazy[4 * N];    // segment tree
int a[N], ch[N], L[N], R[N];  // the information by reading

inline int read() {
    char ch = getchar();
    int x = 0;
    while (!isdigit(ch)) ch = getchar();
    while (isdigit(ch)) {
        x = x * 10 + ch - '0';
        ch = getchar();
    }
    return x;
}

inline void build(int o, int l, int r, int x) {
    if (l == r) {
        T[o] = a[l] >= x;
        lazy[o] = 0;
        return;
    }
    build(lc, l, mid, x);
    build(rc, mid + 1, r, x);
    T[o] = T[lc] + T[rc];
    lazy[o] = 0;
}

inline void pushdown(int o, int l, int r) {
    if (!lazy[o])
        return;
    lazy[lc] = lazy[rc] = lazy[o];
    if (lazy[o] == 1) {
        T[lc] = mid - l + 1;
        T[rc] = r - mid;
    } else
        T[lc] = T[rc] = 0;
    lazy[o] = 0;
}

inline int query(int o, int l, int r, int x, int y) {
    if (x <= l && y >= r)
        return T[o];
    if (x > r || y < l)
        return 0;
    pushdown(o, l, r);
    return query(lc, l, mid, x, y) + query(rc, mid + 1, r, x, y);
}

inline int queryPoint(int o, int l, int r, int x) {
    if (l == x && r == x)
        return T[o];
    pushdown(o, l, r);
    if (x <= mid)
        return queryPoint(lc, l, mid, x);
    else
        return queryPoint(rc, mid + 1, r, x);
}

inline void update(int o, int l, int r, int x, int y, int val) {
    if (x <= l && y >= r) {
        T[o] = val * (r - l + 1);
        lazy[o] = val ? 1 : -1;
        return;
    }
    if (x > r || y < l)
        return;
    pushdown(o, l, r);
    update(lc, l, mid, x, y, val);
    update(rc, mid + 1, r, x, y, val);
    T[o] = T[lc] + T[rc];
}

inline bool check(int x) {
    build(1, 1, n, x);
    for (int i = 1; i <= m; i++) {
        int cnt1 = query(1, 1, n, L[i], R[i]);
        if (ch[i] == 0) {
            update(1, 1, n, R[i] - cnt1 + 1, R[i], 1);
            update(1, 1, n, L[i], R[i] - cnt1, 0);
        } else {
            update(1, 1, n, L[i], L[i] + cnt1 - 1, 1);
            update(1, 1, n, L[i] + cnt1, R[i], 0);
        }
    }
    return queryPoint(1, 1, n, p);
}

int main() {
    freopen("sort.in","r",stdin);
    freopen("sort.out","w",stdout);
    n = read();
    m = read();
    for (int i = 1; i <= n; i++) a[i] = read();
    for (int i = 1; i <= m; i++) {
        ch[i] = read();
        L[i] = read();
        R[i] = read();
    }
    p = read();
    int ll = 1, rr = n, midd, ans;
    while (ll <= rr) {
        midd = (ll + rr) >> 1;
        if (check(midd))
            ans = midd, ll = midd + 1;
        else
            rr = midd - 1;
    }
    printf("%d\n", rr);
    return 0;
}

My version

#include<cstdio>
// #define FILEOI
#define lc (i<<1)
#define rc (i<<1|1)
#define rep(i,__l,__r) for(int i=__l,i##_end_=__r;i<=i##_end_;++i)
#define dep(i,__l,__r) for(int i=__l,i##_end_=__r;i>=i##_end_;--i)
#define cg (c=getchar())
template<class T>inline void qread(T& x){
	x=0;char c;bool f=0;
	while(cg<'0'||'9'<c)if(c=='-')f=1;
	for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
	if(f)x=-x;
}
template<class T,class... Args>inline void qread(T& x,Args&... args){qread(x),qread(args...);}
inline int qread(){
	int x=0;char c;bool f=1;
	while(cg<'0'||'9'<c)if(c=='-')f=0;
	for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
	return f?x:-x;
}
#undef cg
template<class T>inline T Max(const T x,const T y){return x>y?x:y;}
template<class T>inline T Min(const T x,const T y){return x<y?x:y;}
template<class T>inline T fab(const T x){return x>0?x:-x;}
template<class T>void fwrit(T x){
	if(x<0)return (void)(putchar('-'),fwrit(-x));
	if(x>10)fwrit(x/10);
	return (void)(putchar(x%10^48));
}

const int MAXN=1e5;
const int MAXM=1e5;

struct change{int op,l,r;}p[MAXM+5];
struct node{
	int l,r,mid,t1,lazy;
	node(){lazy=-1;}
	node(const int L,const int R,const int M):l(L),r(R),mid(M){lazy=-1;}
}tre[(MAXN<<2)+5];
int n,m,a[MAXN+5],t[MAXN+5],q;

inline void init(){
	qread(n,m);
	rep(i,1,n)qread(a[i]);
	for(int i=1;i<=m;++i)p[i]=change{qread(),qread(),qread()};
	qread(q);
}

inline void pushup(const int i){tre[i].t1=tre[lc].t1+tre[rc].t1;}

inline void pushdown(const int i){
	if(tre[i].l^tre[i].r){
		if(tre[i].lazy==1){
			tre[lc].lazy=tre[rc].lazy=1;
			tre[lc].t1=(tre[lc].r-tre[lc].l+1);
			tre[rc].t1=(tre[rc].r-tre[rc].l+1);
		}
		else if(tre[i].lazy==0){
			tre[lc].lazy=tre[rc].lazy=0;
			tre[lc].t1=tre[rc].t1=0;
		}
	}
	tre[i].lazy=-1;
}

inline void buildtre(const int i,const int l,const int r,const int x){
	// printf("buildtre : %d %d %d %d\n",i,l,r,x);
	int mid=(l+r)>>1;
	tre[i]=node(l,r,mid);
	if(l==r)return (void)(tre[i].t1=(a[l]>=x));
	buildtre(lc,l,mid,x);
	buildtre(rc,mid+1,r,x);
	pushup(i);
}

inline int query(const int i,const int l,const int r){
	// printf("query : %d %d %d\n",i,l,r);
	if(l<=tre[i].l&&tre[i].r<=r)return tre[i].t1;
	if(tre[i].lazy!=-1)pushdown(i);
	int ret=0;
	if(l<=tre[i].mid)ret+=query(lc,l,r);
	if(tre[i].mid<r)ret+=query(rc,l,r);
	pushup(i);
	return ret;
}

inline void update(const int i,const int l,const int r,const int var){
	// if(l>r)return;
	// printf("update : %d to %d, %d\n",l,r,var);
	if(l<=tre[i].l&&tre[i].r<=r){
		tre[i].lazy=var;
		tre[i].t1=(tre[i].r-tre[i].l+1)*var;
		return;
	}
	if(tre[i].lazy!=-1)pushdown(i);
	if(l<=tre[i].mid)update(lc,l,r,var);
	if(tre[i].mid<r)update(rc,l,r,var);
	pushup(i);
}

inline int query(const int i,const int p){
	// printf("update : %d %d\n",i,p);
	if(tre[i].l==tre[i].r)return tre[i].t1;
	if(tre[i].lazy!=-1)pushdown(i);
	int ret;
	if(p<=tre[i].mid)ret=query(lc,p);
	else ret=query(rc,p);
	pushup(i);
	return ret;
}

inline bool check(const int x){
	// printf("Now check : x == %d\n",x);
	buildtre(1,1,n,x);
	// for(int i=1;i<=13;++i)printf("tre[%d] : %d %d %d %d %d\n",i,tre[i].l,tre[i].r,tre[i].mid,tre[i].t1,tre[i].lazy);
	rep(i,1,m){
		int cnt1=query(1,p[i].l,p[i].r);
		int cnt0=p[i].r-p[i].l+1-cnt1;
		// printf("query : %d %d, cnt1 == %d, cnt0 == %d\n",p[i].l,p[i].r,cnt1,cnt0);
		if(p[i].op==0){
			if(cnt0)update(1,p[i].l,p[i].l+cnt0-1,0);
			if(cnt1)update(1,p[i].l+cnt0,p[i].r,1);
			// printf("update : %d to %d, %d\n",p[i].l,p[i].l+cnt0-1,0);
			// printf("update : %d to %d, %d\n",p[i].l+cnt0,p[i].r,1);
		}
		else{
			if(cnt1)update(1,p[i].l,p[i].l+cnt1-1,1);
			if(cnt0)update(1,p[i].l+cnt1,p[i].r,0);
			// printf("update : %d to %d, %d\n",p[i].l,p[i].l+cnt1-1,0);
			// printf("update : %d to %d, %d\n",p[i].l+cnt1,p[i].r,1);
		}
		// printf("Now The info of the tre :\n");
		// for(int j=1;j<=13;++j)printf("tre[%d] : %d %d %d %d %d\n",j,tre[j].l,tre[j].r,tre[j].mid,tre[j].t1,tre[j].lazy);
	}
	// printf("When x == %d,ans == %d\n",x,query(1,q));
	return query(1,q);
}

inline void biSearch(){
	int l=0,r=n,x=0,ans;
	while(l<=r){
		x=(l+r)>>1;
		if(check(x))ans=x,l=x+1;
		else r=x-1;
	}
	fwrit(ans),putchar('\n');
}

signed main(){
#ifdef FILEOI
	freopen("sort.in","r",stdin);
	freopen("sort.out","w",stdout);
#endif
	init();
	biSearch();
	return 0;
}

T3 「THUWC 2017」随机二分图

题目

点这里

考场思路

看到二分图,再看到数学期望,直接跳过 虽然后面已经没有题可以跳了

正解

讲了半天,有点昏,先让我缓一下...

posted @ 2020-01-18 22:31  Arextre  阅读(164)  评论(0编辑  收藏  举报