TransformerEncoder中的语法
PositionalEncodeing
class PositionalEncoding(nn.Module):
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(max_len, 1, d_model)
# 0::2 --> 偶数维度, 1::2 --> 奇数维度
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x: Tensor, shape [seq_len, batch_size, embedding_dim]
"""
x = x + self.pe[:x.size(0)] # 加pe第0维中的[0:x的句长]
return self.dropout(x)
\[PE_{pos,2i} = sin(\frac{pos}{10000^{2i/d_{model}}})
\]
\[PE_{pos,2i+i} = cos(\frac{pos}{10000^{2i/d_{model}}})
\]
div_term
div_term=$ e^{2i * (\frac{-log(10000)}{d_{model}})} = (\frac{1}{10000})^{\frac{2i}{d}}$
pe[:, 0, 0::2]
pe[:, 0, 0::2] = torch.sin(position * div_term)
Example:
pe = torch.zeros(5, 1, 8)
pe[:, 0, 0::2] = 1
pe:
tensor([[[0., 0., 0., 0., 0., 0., 0., 0.]],
[[0., 0., 0., 0., 0., 0., 0., 0.]],
[[0., 0., 0., 0., 0., 0., 0., 0.]]])
-->
# 第三维的 (0)th, (0+2)th, (2+2)th, (4+2)th = 1
tensor([[[1., 0., 1., 0., 1., 0., 1., 0.]],
[[1., 0., 1., 0., 1., 0., 1., 0.]],
[[1., 0., 1., 0., 1., 0., 1., 0.]]])
self.register_buffer()
self.register_buffer('per', pe)
- 将tensor pe 注册成buffer, 不会有梯度传播给它,但能被模型的 state_dict 记录下来
- buffer的更新在forward中,optim.step只能更新nn.parameter类型的参数。
- 网络存储时也会将buffer存下,当网络load模型时,会将存储的模型的buffer也进行赋值。
data.uniform_
- 权重初始化
def init_weights(self) -> None:
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
t()
def batchify(data:Tensor, bsz:int) -> Tensor:
seq_len = data.size(0) // bsz
data = data[:seq_len * bsz]
# t.() 转置。 [bsz, seq_len] -> [seq_len, bsz]
data = data.view(bsz,seq_len).t().contiguous()
return data.to(device)