杜教BM模板
#include<bits/stdc++.h> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #define per(i,a,n) for (int i=n-1;i>=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((int)(x).size()) typedef vector<int> VI; typedef long long ll; typedef pair<int,int> PII; const ll mod=1000000007; ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;} // head namespace linear_seq { const int N=10010; ll res[N],base[N],_c[N],_md[N]; vector<int> Md; void mul(ll *a,ll *b,int k) { rep(i,0,k+k) _c[i]=0; rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod; for (int i=k+k-1;i>=k;i--) if (_c[i]) rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod; rep(i,0,k) a[i]=_c[i]; } int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+... // printf("SIZE %d\n",SZ(b)); ll ans=0,pnt=0; int k=SZ(a); assert(SZ(a)==SZ(b)); rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1; Md.clear(); rep(i,0,k) if (_md[i]!=0) Md.push_back(i); rep(i,0,k) res[i]=base[i]=0; res[0]=1; while ((1ll<<pnt)<=n) pnt++; for (int p=pnt;p>=0;p--) { mul(res,res,k); if ((n>>p)&1) { for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0; rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod; } } rep(i,0,k) ans=(ans+res[i]*b[i])%mod; if (ans<0) ans+=mod; return ans; } VI BM(VI s) { VI C(1,1),B(1,1); int L=0,m=1,b=1; rep(n,0,SZ(s)) { ll d=0; rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod; if (d==0) ++m; else if (2*L<=n) { VI T=C; ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; L=n+1-L; B=T; b=d; m=1; } else { ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; ++m; } } return C; } int gao(VI a,ll n) { VI c=BM(a); c.erase(c.begin()); rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod; return solve(n,c,VI(a.begin(),a.begin()+SZ(c))); } }; int a[2020][2020]; long long det(int n) { long long ans = 1; for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { while (a[j][i] != 0) { int u = a[i][i] / a[j][i]; for (int k = 0; k < n; k++) { int t = (a[i][k] - (long long)a[j][k] * u % mod + mod) % mod; a[i][k] = a[j][k]; a[j][k] = t; } ans = -ans; } } ans = ans * a[i][i] % mod; } if (ans < 0) { ans += mod; } return ans; } long long work(int k, int n) { // assert(n > 2 * k + 1); memset(a, 0, sizeof a); for (int i = 0; i < n; i++) { a[i][i] = k; for (int j = 1; j <= k; j++) { a[i][(i + j) % n] = -1; } } /* for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { printf("%d%c", a[i][j], j == n - 1 ? '\n' : ' '); } } */ int t = 1; for (int i = 1; i < k; i++) { t = t * i % mod; } return (long long)det(n - 1) * powmod(t, n) % mod; } void maketable() { printf("{\n"); for (int k = 1; k <= 5; k++) { if (k > 1) { printf(",\n"); } printf("{\n"); for (int i = 2 * k + 1; i <= 350; i++) { if (i > 2 * k + 1) { printf(","); } printf("%lld", work(k, i)); } printf("}\n"); } printf("}\n"); } int main() { int k; long long n; // maketable(); cin >> k >> n; // k = 5; // printf("%d\n", work(k, n)); vector<int> a; for (int i = 2 * k + 1; i <= (1 << k) + 2 * k + 1; i++) { // printf("%d %d\n", i, work(k, i)); a.push_back(work(k, i)); } // cout << linear_seq::gao(b[k], n - (2 * k + 1)) << endl; cout << linear_seq::gao(a, n - (2 * k + 1)) << endl; return 0; }