HDU 4862 Jump 任意起点最大权K链不相交覆盖

你可以从任意起点开始起跳最多K次

每次跳你可以选择往右或者往下跳 从(x1,y1)跳到(x2,y2) 消耗的能量是曼哈顿距离-1

但是如果每次跳的起点和终点格子里的数字是相同的为X的话你会得到X能量

问你跳K次能不能把整个图刚好跳完(每个点被经过一次) 如果可以的话输出能量的最大值

解:和最小链覆盖一样先把每个点拆成入点和出点 左边是出点 右边是入点 然后按照题意建好边

重要的是我们怎么限制最多起跳K次这个条件 解决方法是Add(S,S',K,0) 然后S'朝右边每个点连一条容量为1费用为0的边

为什么这样就是最多K条链呢?考虑最小链覆盖=|V|-匹配数 即匹配完后 右边没有被匹配的点(入点)是要被当作一条链的起点的 所以右边有几个没被匹配的点就要有几条链

所以我们限制右边最多只能有K个节点没被匹配到即可

#include<bits/stdc++.h>
#define reg register
using namespace std;
typedef long long ll;
typedef int JQK;
const int INF = 0x7f7f7f7f;
const int MAXN = 505, MAXM = 13000;
int Head[MAXN], cur[MAXN], to[MAXM << 1], nxt[MAXM << 1], f[MAXM << 1], ed = 1;
int S, T, MAXP, MAXF, pre[MAXN];
JQK lev[MAXN], mono[MAXM << 1];
bool exist[MAXN];
inline void RR(int &x) {
        char c;
        bool sign = false;
        for (c = getchar(); c < '0' || c > '9'; c = getchar())
                if (c == '-') {
                        sign = true;
                }
        for (x = 0; c >= '0' && c <= '9'; c = getchar()) {
                x = x * 10 + c - '0';
        }
        sign && (x = -x);
}char f1[15][15];
int ff[15][15];
int num[15][15];
int main() {
        int TNT;
        int n, m, K;
        RR(TNT);
        for (int cas = 1; cas <= TNT; cas++) {
                int sum = 0;
                RR(n), RR(m), RR(K);
                for (int i = 1; i <= n; i++) {
                        scanf("%s", f1[i] + 1);
                        for (int j = 1; j <= m; j++) {
                                ff[i][j] = f1[i][j] - '0';
                        }
                }
                for (int i = 1; i <= n; i++) {
                        for (int j = 1; j <= m; j++) {
                                num[i][j] = ++sum;
                        }
                }
                MAXP = 2 * sum + 3;
                init(2 * sum + 2, 2 * sum + 3);
                addedge(S, S - 1, K, 0);
                for (int i = 1; i <= n; i++) {
                        for (int j = 1; j <= m; j++) {
                                addedge(S, num[i][j], 1, 0);
                                addedge(sum + num[i][j], T, 1, 0);
                                addedge(S - 1, sum + num[i][j], 1, 0);
                        }
                }
                for (int i = 1; i <= n; i++) {
                        for (int j = 1; j <= m; j++) {
                                int now = ff[i][j];
                                for (int k = i + 1; k <= n; k++) {
                                        int now2 = ff[k][j];
                                        int add = (now == now2) ? now : 0;
                                        addedge(num[i][j], sum + num[k][j], 1, -(add - (k - i - 1)));
                                }
                                for (int k = j + 1; k <= m; k++) {
                                        int now2 = ff[i][k];
                                        int add = (now == now2) ? now : 0;
                                        addedge(num[i][j], sum + num[i][k], 1, -(add - (k - j - 1)));
                                }
                        }
                }
                printf("Case %d : ", cas);
                if (K < min(n, m)) {
                        printf("-1\n");
                        continue;
                }
                int anser = MCMF();
                if (MAXF != sum) {
                        printf("-1\n");
                } else {
                        printf("%d\n", -anser);
                }
        }
        return 0;
}

 

 

 

posted @ 2019-10-28 23:58  Aragaki  阅读(176)  评论(0编辑  收藏  举报