POJ 1061 青蛙的约会

题意:有两只青蛙,在L那么长的环上,起点分别为x, y,一次跳跃的长度分别为m,n,问几次跳跃后他们能相遇,如不能相遇输出"Impossible"。

 

解法:同余问题+扩展欧几里得。从题意容易推出以下式子:

设跳跃次数为t,mt + x ≡ nt + y (mod L) (1)。

根据同余的性质:当a ≡ b (mod c)时,(a - b) % c = 0。

则式(1)转化成(m - n)t + x - y = pL(p ∈ N)。

问题变为解二元一次方程ax + by = c最小可行解问题。

解决这类问题的算法是扩展欧几里得算法:对于不完全为0的非负整数a,b,gcd(a, b)表示a,b的最大公约数,必然存在整数对x,y,使得gcd(a,b) = ax + by。

对于本题当c不能整除gcd(a, b)的时候说明无解,应输出"Impossible"。

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
int exgcd(LL a, LL b, LL &x, LL &y)
{
    if(b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    int r = exgcd(b, a % b, x, y);
    int t = x;
    x = y;
    y = t - a / b * y;
    return r;
}

证明:当b = 0时,gcd(a, b) = a,所以x = 1, y = 0。当b <> 0时,ax + by = gcd(a, b),根据欧几里得算法(辗转相除法),令a = b, b = a % b,则新等式为bx1 + (a - [a / b] * b)y1 = gcd(b, a % b),整理得ay1 + b(x1 - [a / b]y1) = gcd(b, a % b),因为gcd(a, b) = gcd(b, a % b),所以x = y1, y = x1 - [a / b] * y1,通过递归实现。(参考自百度百科

当c能整除gcd(a, b)时,通过扩展欧几里得算法求出ax + by = gcd(a, b)的解X时,ax + by = c的最小解则为X * (c / gcd(a, b)),由于X可能为负数,所以最终答案应为(X % gcd(a, b) + gcd(a, b)) % gcd(a, b)。

 

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string>
#include<string.h>
#include<math.h>
#include<limits.h>
#include<time.h>
#include<stdlib.h>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define LL long long
using namespace std;
LL exgcd(LL a, LL b, LL &x, LL &y)
{
    if(b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    LL r = exgcd(b, a % b, x, y);
    LL t = x;
    x = y;
    y = t - a / b * y;
    return r;
}
int main()
{
    LL x, y, m, n, l;
    while(~scanf("%lld%lld%lld%lld%lld", &x, &y, &m, &n, &l))
    {
        LL X, Y;
        LL a = n - m, b = l, c = x - y;
        LL r = exgcd(a, b, X, Y);
        if(c % r != 0)
        {
            puts("Impossible");
            continue;
        }
        X *= c / r;
        LL R = b / r;
        LL ans = (X % R + R) % R;
        cout << ans << endl;
    }
    return 0;
}

  

posted @   露儿大人  阅读(162)  评论(0编辑  收藏  举报
编辑推荐:
· Linux系统下SQL Server数据库镜像配置全流程详解
· 现代计算机视觉入门之:什么是视频
· 你所不知道的 C/C++ 宏知识
· 聊一聊 操作系统蓝屏 c0000102 的故障分析
· SQL Server 内存占用高分析
阅读排行:
· 盘点!HelloGitHub 年度热门开源项目
· DeepSeek V3 两周使用总结
· 02现代计算机视觉入门之:什么是视频
· C#使用yield关键字提升迭代性能与效率
· 回顾我的软件开发经历(1)
点击右上角即可分享
微信分享提示