实验三 朴素贝叶斯算法及应用

朴素贝叶斯算法及应用

所在班级 机器学习
实验要求 作业要求
学习目标 理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架
学号 3180701310

【实验目的】

理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架;
掌握常见的高斯模型,多项式模型和伯努利模型;
能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法;
针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。

【实验内容】

实现高斯朴素贝叶斯算法。
熟悉sklearn库中的朴素贝叶斯算法;
针对iris数据集,应用sklearn的朴素贝叶斯算法进行类别预测。
针对iris数据集,利用自编朴素贝叶斯算法进行类别预测。

【实验报告要求】

对照实验内容,撰写实验过程、算法及测试结果;
代码规范化:命名规则、注释;
分析核心算法的复杂度;
查阅文献,讨论各种朴素贝叶斯算法的应用场景;
讨论朴素贝叶斯算法的优缺点。

【实验代码】

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
import math
# data
def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = [
        'sepal length', 'sepal width', 'petal length', 'petal width', 'label'
    ]
    data = np.array(df.iloc[:100, :])
    # print(data)
    return data[:, :-1], data[:, -1]
X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
X_test[0], y_test[0]
class NaiveBayes:
    def __init__(self):
        self.model = None
    # 数学期望
    @staticmethod
    def mean(X):
        return sum(X) / float(len(X))
    # 标准差(方差)
    def stdev(self, X):
        avg = self.mean(X)
        return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))
    # 概率密度函数
    def gaussian_probability(self, x, mean, stdev):
        exponent = math.exp(-(math.pow(x - mean, 2) /
                              (2 * math.pow(stdev, 2))))
        return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent
    # 处理X_train
    def summarize(self, train_data):
        summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
        return summaries
    # 分类别求出数学期望和标准差
    def fit(self, X, y):
        labels = list(set(y))
        data = {label: [] for label in labels}
        for f, label in zip(X, y):
            data[label].append(f)
        self.model = {
            label: self.summarize(value)
            for label, value in data.items()
        }
        return 'gaussianNB train done!'
    # 计算概率
    def calculate_probabilities(self, input_data):
        # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
        # input_data:[1.1, 2.2]
        probabilities = {}
        for label, value in self.model.items():
            probabilities[label] = 1
            for i in range(len(value)):
                mean, stdev = value[i]
                probabilities[label] *= self.gaussian_probability(
                    input_data[i], mean, stdev)
        return probabilities
    # 类别
    def predict(self, X_test):
        # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
        label = sorted(
            self.calculate_probabilities(X_test).items(),
            key=lambda x: x[-1])[-1][0]
        return label
    def score(self, X_test, y_test):
        right = 0
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right += 1
        return right / float(len(X_test))
model = NaiveBayes()
model.fit(X_train, y_train)
print(model.predict([4.4, 3.2, 1.3, 0.2]))
model.score(X_test, y_test)
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf.fit(X_train, y_train)
clf.score(X_test, y_test)
clf.predict([[4.4, 3.2, 1.3, 0.2]])
from sklearn.naive_bayes import BernoulliNB, MultinomialNB # 伯努利模型和多项式模型

【运行截图】














【实验小结】

朴素贝叶斯算法优点:
(1)算法逻辑简单,易于实现;
(2)算法实施的时间、空间开销小:
(3)算法性能稳定,对于不同特点的数据其分类性能差别不大,即模型的健壮性比较好

人们在使用分类器之前,首先做的第一步(也是最重要的一步)往往是特征选择,这个过程的目的就是为了排除特征之间的共线性、选择相对较为独立的特征;
对于分类任务来说,只要各个条件概率之间的排序正确,那么就可以通过比较概率大小来进行分类,不需要知道精确的概率值(朴素贝叶斯分类的核心思想是找出后验概率最大的那个类,而不是求出其精确的概率)。
如果特征之间的相互依赖对所有类别的影响相同,或者相互依赖关系可以互相抵消,那么属性条件独立性的假设在降低计算开销的同时不会对分类结果产生不良影响。
posted @ 2021-06-28 11:03  桃桃布丁  阅读(165)  评论(0编辑  收藏  举报