实验一 感知机及其应用

感知机及其应用

所在班级 机器学习
实验要求 作业要求
学习目标 理解感知器算法原理,能实现感知器算法
学号 3180701310

【实验目的】

  1. 理解感知器算法原理,能实现感知器算法;

  2. 掌握机器学习算法的度量指标;

  3. 掌握最小二乘法进行参数估计基本原理;

  4. 针对特定应用场景及数据,能构建感知器模型并进行预测。

【实验内容】

  1. 安装Pycharm,注册学生版。

  2. 安装常见的机器学习库,如Scipy、Numpy、Pandas、Matplotlib,sklearn等。

  3. 编程实现感知器算法。

  4. 熟悉iris数据集,并能使用感知器算法对该数据集构建模型并应用。

感知机

  算法的输入为m个样本,每个样本对应于n维特征和一个二元类别输出1或者-1,如下:

    (x(0)1,x(0)2,...x(0)n,y0),(x(1)1,x(1)2,...x(1)n,y1),...(x(m)1,x(m)2,...x(m)n,ym)
    输出为分离超平面的模型系数θ向量

    算法的执行步骤如下:

    1) 定义所有x0为1。选择θ向量的初值和 步长α的初值。可以将θ向量置为0向量,步长设置为1。要注意的是,由于感知机的解不唯一,使用的这两个初值会影响θ向量的最终迭代结果。

    2) 在训练集里面选择一个误分类的点(x(i)1,x(i)2,...x(i)n,yi), 用向量表示即(x(i),y(i)),这个点应该满足:y(i)θ∙x(i)≤0
    3) 对θ向量进行一次随机梯度下降的迭代:θ=θ+αy(i)x(i)
    4)检查训练集里是否还有误分类的点,如果没有,算法结束,此时的θ向量即为最终结果。如果有,继续第2步。

转载自:感知原理小结

【实验过程及结果】

实验代码及其注释

1、

import pandas as pd #导入模块
import numpy as np
from sklearn.datasets import load_iris#引用sklearn.datasets模块的一部分
import matplotlib.pyplot as plt
%matplotlib inline#将matplotilb#绘制的图像显示在页面里,而不是弹出一个窗口

2、

%# load data
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)//将列名设置为特征
df['label'] = iris.target//增加一列为类别标签

3、

df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']//将各个列重命名
df.label.value_counts()value_counts//确认数据出现的频率

4、

plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')//绘制散点图
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.xlabel('sepal length')//给图加上图例
plt.ylabel('sepal width')
plt.legend()

5、

data = np.array(df.iloc[:100, [0, 1, -1]]))#按行索引,取出第0,1,-1列

6、

X, y = data[:,:-1], data[:,-1]//X为sepal length,sepal width y为标签

7、

y = np.array([1 if i == 1 else -1 for i in y])//将两个类别设重新设置为+1 —1

8、

%# 数据线性可分,二分类数据
%# 此处为一元一次线性方程
class Model:
def init(self)://将参数w1,w2置为1 b置为0 学习率为0.1
self.w = np.ones(len(data[0])-1, dtype=np.float32) //data[0]为第一行的数据len(data[0]=3)这里取两个w权重参数
self.b = 0
self.l_rate = 0.1
%# self.data = data

def sign(self, x, w, b):
y = np.dot(x, w) + b
return y

%# 随机梯度下降法
def fit(self, X_train, y_train)://拟合训练数据求w和b
is_wrong = False//判断是否误分类
while not is_wrong:
wrong_count = 0
for d in range(len(X_train))://取出样例,不断的迭代
X = X_train[d]
y = y_train[d]
if y * self.sign(X, self.w, self.b) <= 0://根据错误的样本点不断的更新和迭代w和b的值(根据相乘结果是否为负来判断是否出错,本题将0也归为错误)
self.w = self.w + self.l_ratenp.dot(y, X)
self.b = self.b + self.l_ratey
wrong_count += 1
if wrong_count == 0://直到误分类点为0 跳出循环
is_wrong = True
return 'Perceptron Model!'

def score(self):
pass

9、

perceptron = Model()
perceptron.fit(X, y)//感知机模型

10、

x_points = np.linspace(4, 7,10)#默认linspace函数可以生成元素为50的等间隔数列。而前两个参数分别是数列的开头与结尾。如果写入第三个参数,可以制定数列的元素个数。
y_ = -(perceptron.w[0]*x_points + perceptron.b)/perceptron.w[1]
plt.plot(x_points, y_)#绘制模型图像(数据、颜色、图例等信息)
plt.plot(data[:50, 0], data[:50, 1], 'bo', color='blue', label='0')
plt.plot(data[50:100, 0], data[50:100, 1], 'bo', color='orange', label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

11、

from sklearn.linear_model import Perceptron//定义感知机(下面将使用感知机)

12、

clf = Perceptron(fit_intercept=False, max_iter=1000, shuffle=False)
clf.fit(X, y)//使用训练数据拟合

13、

%# Weights assigned to the features.
print(clf.coef_)//输出感知机模型参数

14、

%# 截距 Constants in decision function.
print(clf.intercept_)//输出感知机模型参数

15、

x_ponits = np.arange(4, 8)
%# 确定x轴和y轴的值
y_ = -(clf.coef_[0][0]*x_ponits + clf.intercept_)/clf.coef_[0][1]
plt.plot(x_ponits, y_)
%# 确定拟合的图像的具体信息(数据点,线,大小,粗细颜色等内容)
plt.plot(data[:50, 0], data[:50, 1], 'bo', color='blue', label='0')
plt.plot(data[50:100, 0], data[50:100, 1], 'bo', color='orange', label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

实验运行结果截图

实验小结

*感知机可以通过数学统计学方法完成对函数的估计或近似,能在外界信息的基础上改变内部结构,是一种自适应系统,通俗的讲就是具备学习功能。
*使用感知机一个最大的前提,就是数据是线性可分的。这严重限制了感知机的使用场景。它的分类竞争对手在面对不可分的情况时,比如支持向量机可以通过核技巧来让数据在高维可分,神经网络可以通过激活函数和增加隐藏层来让数据可分。
*通过对感知机的学习,理解到了自己的不足之处,也需要加深对其的理解,因为这些对以后神经网络的学习会有很大的帮助。

posted @ 2021-05-17 22:19  桃桃布丁  阅读(497)  评论(0编辑  收藏  举报