XGBoost

GBDT和XGBoost的区别

  1. GBDT是机器学习算法,XGBoost是该算法的工程实现。
  2. 在使用CART作为基分类器时,XGBoost显式地加入了正则项来控制模型的复杂度,有利于防止过拟合,从而提高模型的泛化能力。
  3. GBDT在模型训练时只使用了代价函数的一阶导数信息,XGBoost对代价函数进行二阶泰勒展开,可以同时使用一阶和二阶导数,二阶导数有利于梯度下降的更快更准. 
  4. 传统的GBDT采用CART作为基分类器,XGBoost支持多种类型的基分类器,比如线性分类器。
  5. 传统的GBDT在每轮迭代时使用全部的数据,XGBoost则采用了与随机森林相似的策略,支持对数据进行采样。
  6. 传统的GBDT没有设计对缺失值进行处理,XGBoost能够自动学习出缺失值的处理策略。

 

 

 

 

 

 

 

 

 

posted @ 2022-02-24 11:56  suwenyuan  阅读(63)  评论(0编辑  收藏  举报