2018 经典的CVPR 关于ImageCaptioning论文

1.        SemStyle: Learning to Generate Stylised Image Captions using Unaligned Text(2018 CVPR)

主要研究方向:本论文主要是做语言风格,就是对同一张图片有多种描述。

 

 

 

 

 

 

 2.        Neural Baby Talk2018 cvpr

主要研究内容:对于图片的描述更多的应该是基于图像内容,而不是基于语言模型去推理;如果是非常见场景,那么模型就差强人意。

 

 

 3.        Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering2018 CVPR

主要研究内容:针对attention之前输入的是均等化图片格子,而不是具体的如同人眼观察到的图像内容,故而本论文是先用faster-RCNN检测得到feature map,而后对其加权,再进行转化为自然语言。

 

 

4.        GroupCap: Group-based Image Captioning with Structured Relevance and Diversity Constraints

研究motivation:1.当前研究都是基于单张图片,没有基于多张图片去做;2.当前只有多样性的的研究,而没有图片相关性的研究。

应用场景:对于图相册的captioning任务。

数据集http://mac.xmu.edu.cn/Data_cvpr18.html (基于MSCOCO更改而成)

 

 

 

 5.        Image Caption Generation with Hierarchical Contextual Visual Spatial Attention

主要研究方向:这里提出的注意力机制考虑了图片region之间的上下文。

 

 

 

 

posted @ 2019-12-22 16:24  suwenyuan  阅读(455)  评论(0编辑  收藏  举报