[ML] Daily Portfolio Statistics

Let's you have $10000, and you inverst 4 stocks. ['SPY', 'IBM', 'XOM', 'GOOG']. The allocation is [0.4, 0.4, 0.1, 0.1] separately.  

The way to calculate the daily porfolio is

  1. Normalize the price by devide price of first day.
  2. Nored * allocation
  3. * starting value
  4. Sum up each row

 

 

After we can port value, the first thing we can calculate is the daily return.

The important thing to remember that the first value of daily return is alwasy zero, so we need to remove the first value.

daily_rets = daily_rets[1:]

 

Four statics:

1. Cumulative return:

  Is a just a measure of how much the value of the portfolio has go up from the beginning to the end.

cum_ret = (port_val[-1] / port_val[0]) -1

 

2. Average daily return:

  The mean value of daily return

avg_daily_ret = daily_rets.mean()

 

3. Standard deviation of odaily return:

std_daily_ret = daily_rets.std()

 

4. Sharp ratio:

  The idea for sharp ratio is to consider our return, or rewards in the context of risk. 

  All else being equal:

    Lower risk is better

    Higher return is better

  Also considers risk free rate of return, nowadays, risk free return is almost 0. (Put menoy into the bank has very low interests)

 

Both stocks have similar volatility, so ABC is better due greater returns.

 

 

Here both stocks have similar returns, but XYZ has lower volatility (risk).

 

 In this case, we actually do not have a clear picture of which stock is better!

 

 

Calculate Shape ratio:

Risk free value can be replace by:

1. LIBOR

2. 3mo T-Bill

3. 0%

Because risk free is so small, noramlly we can just drop it when calculate the sharp raito.

IF we calcualte daily shape ratio: use K = srq(252), monly then srq(12)

 

 

posted @   Zhentiw  阅读(315)  评论(0编辑  收藏  举报
编辑推荐:
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具
历史上的今天:
2017-01-17 [Angular Directive] Structure directive and <template>
2017-01-17 [React] Break up components into smaller pieces using Functional Components
2017-01-17 [TypeScript] Simplify asynchronous callback functions using async/await
点击右上角即可分享
微信分享提示