[Javascript] Classify JSON text data with machine learning in Natural
In this lesson, we will learn how to train a Naive Bayes classifier and a Logistic Regression classifier - basic machine learning algorithms - on JSON text data, and classify it into categories.
While this dataset is still considered a small dataset -- only a couple hundred points of data -- we'll start to get better results.
The general rule is that Logistic Regression will work better than Naive Bayes, but only if there is enough data. Since this is still a pretty small dataset, Naive Bayes works better here. Generally, Logistic Regression takes longer to train as well.
This uses data from Ana Cachopo: http://ana.cachopo.org/datasets-for-single-label-text-categorization.
// train data [{text: 'xxxxxx', label: 'space'}]
// Load train data form the files and train var natural = require('natural'); var fs = require('fs'); var classifier = new natural.BayesClassifier(); fs.readFile('training_data.json', 'utf-8', function(err, data){ if (err){ console.log(err); } else { var trainingData = JSON.parse(data); train(trainingData); } }); function train(trainingData){ console.log("Training"); trainingData.forEach(function(item){ classifier.addDocument(item.text, item.label); }); var startTime = new Date(); classifier.train(); var endTime = new Date(); var trainingTime = (endTime-startTime)/1000.0; console.log("Training time:", trainingTime, "seconds"); loadTestData(); } function loadTestData(){ console.log("Loading test data"); fs.readFile('test_data.json', 'utf-8', function(err, data){ if (err){ console.log(err); } else { var testData = JSON.parse(data); testClassifier(testData); } }); } function testClassifier(testData){ console.log("Testing classifier"); var numCorrect = 0; testData.forEach(function(item){ var labelGuess = classifier.classify(item.text); if (labelGuess === item.label){ numCorrect++; } }); console.log("Correct %:", numCorrect/testData.length);
saveClassifier(classifier) }
function saveClassifier(classifier){ classifier.save('classifier.json', function(err, classifier){ if (err){ console.log(err); } else { console.log("Classifier saved!"); } }); }
In a new project, we can test the train result by:
var natural = require('natural'); natural.LogisticRegressionClassifier.load('classifier.json', null, function(err, classifier){ if (err){ console.log(err); } else { var testComment = "is this about the sun and moon?"; console.log(classifier.classify(testComment)); } });
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具
2016-10-03 [AngularFire 2] Object Observables - How to Read Objects from a Firebase Database?
2016-10-03 [AngularFire 2 ] Hello World - How To Write your First Query using AngularFire 2 List Observables ?