[RxJS] Hot Observable, by .share()
.share() is an alias for .publish().refCount().
So if the source is not yet completed, no matter how many subscribers subscribe to the source, they share the same source.
const clock$ = Rx.Observable.interval(500).share().take(6); const randomNum$ = clock$ .map(i => Math.random() * 100).share(); const smallNum$ = randomNum$ .filter(x => x <= 50) .toArray(); const largeNum$ = randomNum$ .filter(x => x > 50) .toArray(); randomNum$.subscribe(x => console.log('random: ' + x)); smallNum$.subscribe(x => console.log('small:', x)); largeNum$.subscribe(x => console.log('large:', x)); /* Console Run Clear "random: 49.87840398986816" "random: 75.01024609865293" "random: 32.59613439667008" "random: 63.4234109489461" "random: 35.58020574147034" "random: 74.94599860014348" "small:" [49.87840398986816, 32.59613439667008, 35.58020574147034] "large:" [75.01024609865293, 63.4234109489461, 74.94599860014348] */
It is important to know share the same source is only before the source stream completed, if it is already completed, then the new subscribers will trigger another source running.
For example, in the code, we change largeNum$ happens after 4s of first subscriber.
setTimeout(() => largeNum$.subscribe(x => console.log('large:', x)), 4000)
Because source will complete after 3s, therefor it will trigger a new source:
/* "random: 74.91154828671043" "random: 10.964684522348733" "random: 29.076967396825903" "random: 20.070493440627235" "random: 22.44421045844409" "random: 14.233614544120798" "small:" [10.964684522348733, 29.076967396825903, 20.070493440627235, 22.44421045844409, 14.233614544120798] "large:" [93.04544926644354, 65.4090612653734, 67.15475480984114] */
As we can see, in the large array, all the numbers are not from random we log out before.
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具
2016-05-31 [RxJS] Transformation operator: repeat
2016-05-31 [RxJS] Error handling operator: catch
2016-05-31 [Angular 2] Keynote: Lazy Routing -- NGCONF