[Ramda] R.project -- Select a Subset of Properties from a Collection of Objects in Ramda
In this lesson we'll take an array of objects and map it to a new array where each object is a subset of the original. We'll look at multiple ways to accomplish this, refactoring our code into a simple and easy to read function using Ramda's map
, pick
and project
functions.
Lets say we have an array of objects, we want to only pick the 'name' and 'price' props from each object:
const products = [ {name: 'Jeans', price:80, category: 'clothes'}, {name: 'Hoodie', price:60, category: 'clothes'}, {name: 'Jacket', price:120, category: 'clothes'}, {name: 'Cards', price: 35, category: 'games'}, {name: 'iPhone', price: 649, category: 'electronics'}, {name: 'Sauce Pan', price: 100, category: 'housewares'} ] const result = products.map(p => ({name: p.name, price: p.price})) console.log(result);
It works but as we can image that if we need to pick 10 props or even more, then it would be a problem, the code would be hard to read.
We can improve this by using Ramda's pick method:
const result = products.map(p => R.pick(['name', 'price'], p))
Then we can utilize Ramda automaticlly curry function to improve the code:
const result = products.map(R.pick(['name', 'price']))
Then we can extract the bussniess logic into a sprate function to make it resuable:
const getNameAndPrice = R.map(R.pick(['name', 'price'])); const result = getNameAndPrice(products);
Since it is a common pattern that "map to each object in array and pick certain props will it", we can use "R.project":
const getNameAndPrice = R.project(['name', 'price']); const result = getNameAndPrice(products);
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具
2016-03-03 [AngualrJS] Using Angular-Cache for caching http request
2015-03-03 [Javascript] Introduce to Webpack