[Algorithm] DP - 03. Max Subset Sum No Adjacent - Slice window
Write a function that takes in an array of positive integers and returns the maximum sum of non-adjacent elements in the array.
If the input array is empty, the function should return 0.
Sample Input
array = [75, 105, 120, 75, 90, 135]
Sample Output
330 // 75 + 120 + 135
Normal approach:
// Time: O(N)
// Space: O(N)
function maxSubsetSumNoAdjacent(array) {
if (array.length === 0) {
return 0
}
const dp = Array.from(array, (val, i) => {
if (i === 0) {
return val
} else if (i === 1) {
return Math.max(array[0], array[1])
} else {
return 0
}
})
for (let i = 2; i < array.length; i++) {
if (dp[i-2] + array[i] > dp[i-1]) {
dp[i] = dp[i-2] + array[i]
} else {
dp[i] = dp[i-1]
}
}
return dp[dp.length - 1]
}
// Do not edit the line below.
exports.maxSubsetSumNoAdjacent = maxSubsetSumNoAdjacent;
It can be improved to:
// Time: O(N)
// Space: O(1)
We don't need to track the whole dp
array, and loop from beginning to current i
position to get max sum.
What we can do for this task is that we only need to keep tracking two values, a samll slice window.
if ary[i] + dp[0] > dp[1]
dp[0] = dp[1]
dp[1] = ary[i] + dp[0]
else
dp[0] = dp[1]
function maxSubsetSumNoAdjacent(array) {
if (array.length === 0) {
return 0
}
const dp = [0, 0]
for (let i = 0; i < array.length; i++) {
if (dp[0] + array[i] > dp[1]) {
const val = dp[0] + array[i]
dp[0] = dp[1]
dp[1] = val
} else {
dp[0] = dp[1]
}
}
return dp[1]
}
// Do not edit the line below.
exports.maxSubsetSumNoAdjacent = maxSubsetSumNoAdjacent;