[Machine Learning Ex2] Linear Regression with Multiple Variables
x2: midterm exam ^ 2, apply mean normalization:
mean value = (7921 + 5184 + 8836 +4761) / 4 = 6675.5
range = 8836-4761 = 4075
ans = (4761 - 6675./5) / 4075 = -0.47
It's increasing, so means it is overshotting.. so need to decrease the learning rate.
it is 5 features, but we need to count x0 as well, so 6 features, X = 23 * 6 matrix
y: the same size the number of data, it should be vector as well, so 23 * 1
A) Data is small enough, instead of mulpti steps way to find theta by using GD, use NE is more efficient
B) Only apply when data is large, for example more than 1 000 000
C) Not the primay reason, GD can get stucked in local min... but by repeat a number of times with different starting point and learning rate, we can find global min
D) Nope....
A) Nope, NE actually doesnt' need feature scaling
B) Yes
C) Nope
D) the same as A
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具
2017-08-24 [D3] Animate with the General Update Pattern in D3 v4
2016-08-24 [Ramada] Build a Functional Pipeline with Ramda.js
2015-08-24 [rxjs] Throttled Buffering in RxJS (debounce)
2015-08-24 [rxjs] Demystifying Cold and Hot Observables in RxJS
2015-08-24 [rxjs] Shares a single subscription -- publish()