[Machine Learning] Gradient Descent For Multiple Variables
The gradient descent equation itself is generally the same form; we just have to repeat it for our 'n' features:
In other words:
The following image compares gradient descent with one variable to gradient descent with multiple variables:
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具
2019-08-22 [Angular] Lazy Load CSS at runtime with the Angular CLI
2018-08-22 [Java Spring] Spring Annotation Configuration Using XML
2018-08-22 [Jest] Automate your migration to Jest using codemods
2017-08-22 [D3] Reuse Transitions in D3 v4
2016-08-22 [React] Styling React Components With Aphrodite
2016-08-22 [Canvas] Make Canvas Responsive to Pixel Ratio
2016-08-22 [RxJS] Introduction to RxJS Marble Testing