[Intro to Deep Learning with PyTorch -- L2 -- N20] Cross-Entropy

If I have bunch of events and a bunch of probabilities, how likely is it those events happen based on the probabilities?

If it is very likely then we have a small cross entropy; 

If it is unlikely, then we have a large cross entropy.

 

 

import numpy as np

# Write a function that takes as input two lists Y, P,
# and returns the float corresponding to their cross-entropy.
def cross_entropy(Y, P):
    Y = np.float_(Y)
    P = np.float_(P)
    return -np.sum(Y * np.log(P) + (1 - Y) * np.log(1 - P))

 

posted @   Zhentiw  阅读(251)  评论(0编辑  收藏  举报
编辑推荐:
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具
历史上的今天:
2019-06-13 [Functional Programming] Using Isomorphisms to build a simple lower <> upper case switcher
2017-06-13 [Yarn] Use Yarn to Create an Alternative Import Name of an Installed Library
2016-06-13 [ES7] Descorator: evaluated & call order
2016-06-13 [Javascript] MetaProgramming: new.target
2016-06-13 [Javascript] MetaProgramming: function name
2016-06-13 [ES7] Exploring ES2016 Decorators
点击右上角即可分享
微信分享提示