[Algorithm] Fibonacci problem by using Dynamic programming

vThere are three ways to solve Fibonacci problem

  1. Recursion
  2. Memoize
  3. Bottom-up

'First Recursion approach:

def fib(n):
    if n == 1 or n == 2:
        result = 1
    else:
        result = fib(n-1) + fib(n -2)
    
    return result;

 

As we can see to calculate fib(5), we need to calculate fib(3) twice and fib(2) three times.

Time complexity is O(2^n), because for each n from 3, we need to call fib() twice in else block:

else:
    result = fib(n-1) + fib(n -2)

 

To solve the problem, we can use memoize solution to solve repeated calculation.

复制代码
deb fib(n, memo):
    if memo[n] != null
        return memo[n]
    if n == 1 or n == 2:
        result = 1
    else:
        result = fib(n - 1) + fib(n-2)
    memo[n] = result
    return result
复制代码

Using fib(5) as example: to calulate fib(5) we need to know fib(4)..fib(3), fib(2), fib(1), since we already know fib(1), fib(2) = 1, then we can know fib(3) = 2..fib(4) = 3, fib(5) = 5. 

Time complexity is O(2n + 1) -> O(n): because we just need to go though memo once. And 2*2 is because of:

result = fib(n - 1) + fib(n-2)

We still can improve it by using bottom up approach, because from the previous solution:

Using fib(5) as example: to calulate fib(5) we need to know fib(4)..fib(3), fib(2), fib(1), since we already know fib(1), fib(2) = 1, then we can know fib(3) = 2..fib(4) = 3, fib(5) = 5. 

We can clear see the solution the problem by going from bottom (fib(1) & fib(2)) to up (fib(5)):

复制代码
def fib_bottom_up(n):
    if n == 1 or n == 2:
        return 1
    bottom_up = new int[n+1]
    bottom_up[1] = 1
    bottom_up[2] = 1
    for i from 3 upto n:
        bottom_up[i] = bottom_up[i-1]+bottom_up[i-2]

    return bottom_up[n]
复制代码

Time complexity is O(n).


 

Notice that some programming language has recursion limit, for example, python has set the limiation to 1000, which mean if you keep calling one function 1000 times, it will throw errors.

 

In this sense, bottom up is much better than recursion apporach (recursion and memoize).

posted @   Zhentiw  阅读(266)  评论(0编辑  收藏  举报
编辑推荐:
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具
历史上的今天:
2018-02-12 [TypeScript] Generic Functions, class, Type Inference and Generics
2017-02-12 [NativeScript] Create new application and run emulator
2017-02-12 [NPM] Create a node script to replace a complex npm script
2017-02-12 [NPM] Create a bash script to replace a complex npm script
2017-02-12 [NPM] Pull out npm scripts into another file with p-s
2016-02-12 [Redux] Extracting Action Creators
2016-02-12 [Redux] Generating Containers with connect() from React Redux (FooterLink)
点击右上角即可分享
微信分享提示