[Algorithm] Median Maintenance algorithm implementation using TypeScript / JavaScript
The median maintenance problem is a common programming challenge presented in software engineering job interviews.
In this lesson we cover an example of how this problem might be presented and what your chain of thought should be to tackle this problem efficiently.
Lets first refresh what is a median
- The median is the middle element in the sorted list
- Given a list of numbers
` The median is the middle element in the sorted list. Given 13, 23, 11, 16, 15, 10, 26 Sort them 10, 11, 13, 15, 16, 23, 26 ↑ Median If we have an even number of elements we average E.g. 10, 11, 13, 15, 16, 23, 26, 32 \ / 15.5
They way we solve the problem is by using two heaps (Low & High) to divide the array into tow parts.
Low | High
Max Heap | Min Heap
Low part is a max heap, high part is a min heap.
`
(n/2 ± 1) smallest items in a low MaxHeap (n/2 ± 1) biggest items in a high MinHeap
peek => n/2th smallest peek => n/2th smallest
\ /
MEDIAN!
`
If low part size is equals to high part size, then we get avg value, otherwise, we get from larger size heap.
function MedianMaintaince() { let lowMaxHeap = new Heap((b, a) => a - b); let highMinHeap = new Heap((a, b) => a - b); return { add(value) { // For the first element, we add to lowMaxHeap by default if (lowMaxHeap.size() === 0 || value < lowMaxHeap.peek()) { lowMaxHeap.add(value); } else { highMinHeap.add(value); } /** * Reblance: * * If low.size = 2; high.size = 4, then we move the root of high to the low part * so that low.size = 3, high.size = 3 */ let smallerHeap = lowMaxHeap.size() > highMinHeap.size() ? highMinHeap : lowMaxHeap; let biggerHeap = smallerHeap === lowMaxHeap ? highMinHeap : lowMaxHeap; if (biggerHeap.size() - smallerHeap.size() > 1) { smallerHeap.add(biggerHeap.extractRoot()); } /** * If low.szie === high.size, extract root for both and calculate the average value */ if (lowMaxHeap.size() === highMinHeap.size()) { return (lowMaxHeap.peek() + highMinHeap.peek()) / 2; } else { // get peak value from the bigger size of heap return lowMaxHeap.size() > highMinHeap.size() ? lowMaxHeap.peek() : highMinHeap.peek(); } } }; } const mm = new MedianMaintaince(); console.log(mm.add(4)); // 4 console.log(mm.add(2)); // 3 console.log(mm.add(5)); // 4 console.log(mm.add(3)); // 3.5
We have heap data structure:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | function printArray(ary) { console.log(JSON.stringify(ary, null , 2)); } function Heap(cmpFn = () => {}) { let data = []; return { data, // 2n+1 leftInx(index) { return 2 * index + 1; }, //2n + 2 rightInx(index) { return 2 * index + 2; }, // left: (n - 1) / 2, left index is always odd number // right: (n - 2) / 2, right index is always even number parentInx(index) { return index % 2 === 0 ? (index - 2) / 2 : (index - 1) / 2; }, add(val) { this .data.push(val); this .siftUp( this .data.length - 1); }, extractRoot() { if ( this .data.length > 0) { const root = this .data[0]; const last = this .data.pop(); if ( this .data.length > 0) { // move last element to the root this .data[0] = last; // move last elemment from top to bottom this .siftDown(0); } return root; } }, siftUp(index) { // find parent index let parentInx = this .parentInx(index); // compare while (index > 0 && cmpFn( this .data[index], this .data[parentInx]) < 0) { //swap parent and current node value [ this .data[index], this .data[parentInx]] = [ this .data[parentInx], this .data[index] ]; //swap index index = parentInx; //move to next parent parentInx = this .parentInx(index); } }, siftDown(index) { const minIndex = (leftInx, rightInx) => { if (cmpFn( this .data[leftInx], this .data[rightInx]) <= 0) { return leftInx; } else { return rightInx; } }; let min = minIndex( this .leftInx(index), this .rightInx(index)); while (min >= 0 && cmpFn( this .data[index], this .data[min]) > 0) { [ this .data[index], this .data[min]] = [ this .data[min], this .data[index]]; index = min; min = minIndex( this .leftInx(index), this .rightInx(index)); } }, peek() { return this .data[0]; }, print() { printArray( this .data); }, size() { return this .data.length; } }; } |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具
2016-01-04 [Javascript] JSON.parse API
2016-01-04 [React Testing] Setting up dependencies && Running tests
2016-01-04 [ES6] Array -- Destructuring and Rest Parameters && for ..of && Arrat.find()
2015-01-04 [AngularJS] Lazy Loading modules with ui-router and ocLazyLoad
2015-01-04 [AngularJS] Lazy loading Angular modules with ocLazyLoad
2015-01-04 [AngularJS] Consistency between ui-router states and Angular directives