colab上比较DINO
!git clone https://github.com/facebookresearch/dino.git !pip install timm
import torch import timm from PIL import Image from torchvision import transforms # 加载模型 model = torch.hub.load('facebookresearch/dino:main', 'dino_vits8') model.eval() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # 定义图像预处理 transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) # 图像特征提取函数 def extract_features(img_path): image = Image.open(img_path).convert('RGB') x = transform(image).unsqueeze(0).to(device) with torch.no_grad(): features = model(x) return features[0] # 加载图像并提取特征 features1 = extract_features("img1.jpg") features2 = extract_features("img2.jpg") # 计算特征之间的余弦相似度 cos = torch.nn.CosineSimilarity(dim=1, eps=1e-6) similarity = cos(features1.unsqueeze(0), features2.unsqueeze(0)) print("Similarity:", similarity.item())
前ICPC算法竞赛退役选手|现摸鱼ing