Problem Description
There is a strange lift.The lift can stop can at every floor as you want, and there is a number Ki(0 <= Ki <= N) on every floor.The lift have just two buttons: up and down.When you at floor i,if you press the button "UP" , you will go up Ki floor,i.e,you will go to the i+Ki th floor,as the same, if you press the button "DOWN" , you will go down Ki floor,i.e,you will go to the i-Ki th floor. Of course, the lift can't go up high than N,and can't go down lower than 1. For example, there is a buliding with 5 floors, and k1 = 3, k2 = 3,k3 = 1,k4 = 2, k5 = 5.Begining from the 1 st floor,you can press the button "UP", and you'll go up to the 4 th floor,and if you press the button "DOWN", the lift can't do it, because it can't go down to the -2 th floor,as you know ,the -2 th floor isn't exist.
Here comes the problem: when you are on floor A,and you want to go to floor B,how many times at least he has to press the button "UP" or "DOWN"?
Here comes the problem: when you are on floor A,and you want to go to floor B,how many times at least he has to press the button "UP" or "DOWN"?
Input
The input consists of several test cases.,Each test case contains two lines.
The first line contains three integers N ,A,B( 1 <= N,A,B <= 200) which describe above,The second line consist N integers k1,k2,....kn.
A single 0 indicate the end of the input.
The first line contains three integers N ,A,B( 1 <= N,A,B <= 200) which describe above,The second line consist N integers k1,k2,....kn.
A single 0 indicate the end of the input.
Output
For each case of the input output a interger, the least times you have to press the button when you on floor A,and you want to go to floor B.If you can't reach floor B,printf "-1".
Sample Input
5 1 5 3 3 1 2 5 0
Sample Output
3
1 /* 2 Sample Input 3 5 1 5 4 3 3 1 2 5 5 0 6 Sample Output 7 3 8 */ 9 #include<iostream> 10 #include<cstring> 11 #include<queue> 12 using namespace std; 13 int n,b;//n是层数,b是终点 14 int floor[205]; 15 bool vis[205]; 16 struct node 17 { 18 int f,step; 19 }a;//a是起点 20 int bfs() 21 { 22 queue<node>Q; 23 Q.push(a); 24 node cur,next; 25 while(!Q.empty()) 26 { 27 cur=Q.front(); 28 Q.pop(); 29 vis[cur.f]=true; 30 if(cur.f==b) 31 return cur.step;//bfs广搜直接得出的就是最优解 32 for(int i=-1;i<=1;i+=2)//上下方向 33 { 34 next.f=cur.f+i*(-1)*floor[cur.f]; 35 next.step=cur.step+1; 36 if(next.f>=1&&next.f<=n&&!vis[next.f]) 37 { 38 Q.push(next);//bfs不需要回溯 39 } 40 } 41 } 42 return -1; 43 } 44 int main() 45 { 46 while(cin>>n&&n) 47 { 48 cin>>a.f>>b; 49 a.step=0; 50 for(int i=1;i<=n;i++) 51 { 52 cin>>floor[i]; 53 } 54 memset(vis,false,sizeof(vis)); 55 cout<<bfs()<<endl; 56 } 57 return 0; 58 }
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 《HelloGitHub》第 106 期
· 数据库服务器 SQL Server 版本升级公告
· 深入理解Mybatis分库分表执行原理
· 使用 Dify + LLM 构建精确任务处理应用