TF基础5

卷积神经网络CNN

卷积神经网络的权值共享的网络结构显著降低了模型的复杂度,减少了权值的数量。
神经网络的基本组成包括输入层、隐藏层和输出层。

卷积神经网络的特点在于隐藏层分为卷积层和池化层。

padding

卷积核在提取特征映射时的动作称为padding,其中有两种方式:
不越过边缘取样称为Vaild Padding
越过边缘取样称为Same Padding

卷积神经网络的发展

Alexnet之后卷积神经网络的演化过程主要有4个方向的演化:一个是网络加深,二是增强卷积层的功能,三是从分类任务到检测任务,四是增加新的功能模块。

MINIST的AlexNet实现

一次完整的训练模型和评估模型的过程一般分为3个步骤:
加载数据
定义网络模型
训练模型和评估模型



posted @ 2019-03-06 10:30  谁动了我的奶盖  阅读(224)  评论(0编辑  收藏  举报